scholarly journals Transcriptome profiling unveils GAP43 regulates ABC transporters and EIF2 signaling in colorectal cancer cells

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xi Chen ◽  
Hongjin Wu ◽  
Jia Feng ◽  
Ying Li ◽  
Jiao Lv ◽  
...  

Abstract Background The growth- and plasticity-associated protein-43 (GAP43) is biasedly expressed in indigestive system and nervous system. Recent study has shown that GAP43 is responsible for the development of neuronal growth and axonal regeneration in normal nervous tissue, while serves as a specific biomarker of relapsed or refractory neuroblastoma. However, its expression pattern and function in digestive system cancer remains to be clarified. Methods In this study, we examined the GAP43 status with qRT-PCR and bisulfite genomic sequencing in colorectal cancer (CRC). We investigated the effect of overexpressed GAP43 in CRC cells with RNA-seq. The RNA-seq data was analyzed with DAVID and IPA. Results GAP43 was downregulated in CRC compared to the adjacent tissues. DNA methylase inhibitor 5-Aza-CdR treatment could significantly induce GAP43, indicated that the silencing of GAP43 gene in CRC is closely related to DNA methylation. Bisulfite genomic sequencing confirmed the promoter methylation of GAP43 in CRC. To explore the transcriptional alterations by overexpressed GAP43 in CRC, we performed RNA-seq and found that upregulated genes were significantly enriched in the signaling pathways of ABC transporters and ECM-receptor interaction, while downregulated genes were significantly enriched in Ribosome signaling pathway. Further Ingenuity Pathway Analysis (IPA) showed that EIF2 signaling pathway was significantly repressed by overexpression of GAP43. Conclusion Our findings provide a novel mechanistic insight of GAP43 in CRC. Transcriptome profiling of overexpressed GAP43 in CRC uncovered the functional roles of GAP43 in the development of human CRC.

2020 ◽  
Author(s):  
Xi Chen ◽  
Hongjin Wu ◽  
Li Xiao ◽  
Jia Feng ◽  
Danmeng Sun ◽  
...  

Abstract BackgroundThe growth- and plasticity-associated protein-43 (GAP43) is biasedly expressed in indigestive system and nervous system. Recent study has shown that GAP43 is responsible for the development of neuronal growth and axonal regeneration in normal nervous tissue, while serves as a specific biomarker of relapsed or refractory neuroblastoma. However, its expression pattern and function in digestive system cancer still remains to be clarified.ResultsIn this study, we found GAP43 was downregulated in colorectal cancer (CRC) compared to the adjacent tissues. DNA methylase inhibitor 5-Aza-CdR treatment could significantly induce GAP43, indicated that the silencing of GAP43 gene in CRC is closely related to DNA methylation and histone deacetylation. Bisulfite genomic sequencing confirmed the promoter methylation of GAP43 in CRC. To explore the transcriptional alterations by overexpressed GAP43 in CRC, we performed RNA-seq and found that upregulated genes were significantly enriched in the signaling pathways of ABC transporters and ECM-receptor interaction, while downregulated genes were significantly enriched in Ribosome signaling pathway. Further Ingenuity Pathway Analysis (IPA) showed that EIF2 signaling pathway was significantly repressed by overexpression of GAP43.ConclusionOur findings provide a novel mechanistic insight of GAP43 in CRC. Transcriptome profiling of overexpressed GAP43 in CRC uncovered the functional roles of GAP43 in the development of human CRC.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ruining Liu ◽  
Gang Li ◽  
Haoli Ma ◽  
Xianlong Zhou ◽  
Pengcheng Wang ◽  
...  

Abstract Background Ventilator-induced diaphragmatic dysfunction (VIDD) is associated with weaning difficulties, intensive care unit hospitalization (ICU), infant mortality, and poor long-term clinical outcomes. The expression patterns of long noncoding RNAs (lncRNAs) and mRNAs in the diaphragm in a rat controlled mechanical ventilation (CMV) model, however, remain to be investigated. Results The diaphragms of five male Wistar rats in a CMV group and five control Wistar rats were used to explore lncRNA and mRNA expression profiles by RNA-sequencing (RNA-seq). Muscle force measurements and immunofluorescence (IF) staining were used to verify the successful establishment of the CMV model. A total of 906 differentially expressed (DE) lncRNAs and 2,139 DE mRNAs were found in the CMV group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine the biological functions or pathways of these DE mRNAs. Our results revealed that these DE mRNAs were related mainly related to complement and coagulation cascades, the PPAR signaling pathway, cholesterol metabolism, cytokine-cytokine receptor interaction, and the AMPK signaling pathway. Some DE lncRNAs and DE mRNAs determined by RNA-seq were validated by quantitative real-time polymerase chain reaction (qRT-PCR), which exhibited trends similar to those observed by RNA-sEq. Co-expression network analysis indicated that three selected muscle atrophy-related mRNAs (Myog, Trim63, and Fbxo32) were coexpressed with relatively newly discovered DE lncRNAs. Conclusions This study provides a novel perspective on the molecular mechanism of DE lncRNAs and mRNAs in a CMV model, and indicates that the inflammatory signaling pathway and lipid metabolism may play important roles in the pathophysiological mechanism and progression of VIDD.


2021 ◽  
Author(s):  
Rong Huang Huang ◽  
Tingting Li Li ◽  
Xi Yong Yong ◽  
Huling Wen Wen ◽  
Xing Zhou Zhou ◽  
...  

Abstract 15-Lipoxygenase-2(15-LOX-2) is thought to regulate inflammation and immunological function however, its mechanisms of action are still unclear. Furthermore, it has been reported that salidroside has anti inflammatory properties , but its role in macrophage function has not been understood yet In this study, we aimed to determine how 15-LOX-2 expression level s affect the function of macrophages and the effect of salidroside on 15-LOX-2 deficient macrophages We used multiple functional genetic strategies to determine 15-LOX-2 function in macrophages. 15-LOX-2 deficiency promotes phagocytosis and proliferation of macrophages and impairs their apoptosis Mechanistically, t he expression levels of cyclophilinB (CypB) were upregulated in 15-LOX-2 deficient Ana 1 macrophages, whereas those of caspase 3 were down regulated. Furthermore, RNA-seq analysis showed that inflammation, complement, and TNF-α signaling pathway s were all activated in 15-LOX-2 deficient Ana 1 macrophages. Treatment of 15-LOX-2 deficient macrophages with salidroside, a natural product derived from Rhodiola species, effectively reversed the effects of 15-LOX-2 deficiency on caspase 3 and CypB levels, as well as on apoptosis and proliferation. In conclusion, our study shows that there is a newly identified link between 15-LOX-2 deficiency and salidroside in regulating macrophage survival, proliferation, and function. Salidroside may be a promising therapeutic strategy for treating inflammation related diseases resulting from 15-LOX-2 deficiency.


2021 ◽  
Author(s):  
Zhiyan Hu ◽  
Jiaxian Zhu ◽  
Yidan Ma ◽  
Ting Long ◽  
Lingfang Gao ◽  
...  

Abstract Background CIP4 (Cdc42-interacting protein 4), a member of the F-BAR family which plays an important role in regulating cell membrane and actin, has been reported to interact with Cdc42 and closely associated with tumor invadopodia formation. However, the specific mechanism of the interaction between CIP4 and Cdc42 as well as the downstream signaling pathway in response in colorectal cancer (CRC) remains unknown, which is worth exploring for its impact on tumor infiltration and metastasis. Methods Immunohistochemistry and western blot analyses were performed to detect the expression of CIP4 and Cdc42. Their relationship with CRC clinicopathological characteristics was further analyzed. Wound-healing, transwell migration and invasion assays tested the effect of CIP4 on cells migration and invasion ability in vitro, and the orthotopic xenograft colorectal cancer mouse mode evaluated the tumor metastasis in vivo. The invadopodia formation and function were assessed by immunofluorescence, scanning electron microscopy (SEM) and matrix degradation assay. The interaction between CIP4 and Cdc42 was confirmed by co-immunoprecipitation (co-IP) and GST-Pull down assays. Immunofluorescence was used to observed the colocalization of CIP4, GTP-Cdc42 and invadopodia. The related downstream signaling pathway was investigated by western blot and immunofluorescence. Results CIP4 expression was significantly higher in human colorectal cancer tissues and correlated with the CRC infiltrating depth and metastasis as well as the lower survival rate in patients. In cultured CRC cells, knockdown of CIP4 inhibited cell migration and invasion ability in vitro and the tumor metastasis in vivo, while overexpression of CIP4 confirmed the opposite situation by promoting invadopodia formation and matrix degradation ability. In addition, we identified GTP-Cdc42 as a directly interactive protein of CIP4, which was upregulated and recruited by CIP4 to participate in this process. Furthermore, activated NF-κB signaling pathway was found in CIP4 overexpression CRC cells contributing to invadopodia formation while inhibition of either CIP4 or Cdc42 led to suppression of NF-κB pathway resulted in decrease quantity of invadopodia. Conclusion Our findings suggested that CIP4 targets to recruit GTP-Cdc42 and directly combines with it to accelerate invadopodia formation and function by activating NF-κB signaling pathway, thus promoting CRC infiltration and metastasis.


2020 ◽  
Author(s):  
Xue Fan ◽  
Meng Li ◽  
Min Xiao ◽  
Cong Liu ◽  
Mingguo Xu

Abstract Background: Kawasaki disease (KD) leads to coronary artery damage and the etiology of KD is unknown. The present study was designed to explore the differentially expressed genes (DEGs) in KD serum-induced human coronary artery endothelial cells (HCAECs) by RNA-sequence (RNA-seq). Methods: HCAECs were stimulated with serum (15% (v/v)), which were collected from 20 healthy children and 20 KD patients, for 24 hours. DEGs were then detected and analyzed by RNA-seq and bioinformatics analysis. Results: The expression of SMAD1, SMAD6, CD34, CXCL1, PITX2, and APLN was validated by qPCR. 102 genes, 59 up-regulated and 43 down-regulated genes, were significantly differentially expressed in KD groups. GO enrichment analysis showed that DEGs were enriched in cellular response to cytokines, cytokine-mediated signaling pathway, and regulation of immune cells migration and chemotaxis. KEGG signaling pathway analysis showed that DEGs were mainly involved in cytokine−cytokine receptor interaction, chemokine signaling pathway, and TGF−β signaling pathway. Besides, the mRNA expression levels of SMAD1, SMAD6, CD34, CXCL1, and APLN in the KD group were significantly up-regulated compared with the normal group, whilePITX2 was significantly down-regulated. Conclusion: 102 DEGs in KD serum-induced HCAECs were identified, and six new targets were proposed as potential indicators of KD.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jinpeng Yuan ◽  
Aosi Xie ◽  
Qiangjian Cao ◽  
Xinxin Li ◽  
Juntian Chen

Background. Inhibin subunit beta B (INHBB) is a protein-coding gene that participated in the synthesis of the transforming growth factor-β (TGF-β) family members. The study is aimed at exploring the clinical significance of INHBB in patients with colorectal cancer (CRC) by bioinformatics analysis. Methods. Real-time PCR and analyses of Oncomine, Gene Expression Omnibus (GEO), and The Cancer Genome Atlas (TCGA) databases were utilized to evaluate the INHBB gene transcription level of colorectal cancer (CRC) tissue. We evaluated the INHBB methylation level and the relationship between expression and methylation levels of CpG islands in CRC tissue. The corresponding clinical data were obtained to further explore the association of INHBB with clinical and survival features. In addition, Gene Set Enrichment Analysis (GSEA) was performed to explore the gene ontology and signaling pathways of INHBB involved. Results. INHBB expression was elevated in CRC tissue. Although the promoter of INHBB was hypermethylated in CRC, methylation did not ultimately correlate with the expression of INHBB. Overexpression of INHBB was significantly and positively associated with invasion depth, distant metastasis, and TNM stage. Cox regression analyses and Kaplan-Meier survival analysis indicated that high expression of INHBB was correlated with worse overall survival (OS) and disease-free survival (DFS). GSEA showed that INHBB was closely correlated with 5 cancer-promoting signaling pathways including the Hedgehog signaling pathway, ECM receptor interaction, TGF-β signaling pathway, focal adhesion, and pathway in cancer. INHBB expression significantly promoted macrophage infiltration and inhibited memory T cell, mast cell, and dendritic cell infiltration. INHBB expression was positively correlated with stromal and immune scores of CRC samples. Conclusion. INHBB might be a potential prognostic biomarker and a novel therapeutic target for CRC.


2021 ◽  
Author(s):  
Wan Sun ◽  
Juan Wang ◽  
Jieping Zhang ◽  
Furong Gao ◽  
Qingjian Ou ◽  
...  

AbstractGlia maturation factor beta (GMFB) is a growth and differentiation factor that act as an intracellular regulator of signal transduction pathways. The SUMOylation is a post-translational modification (PTM) that plays a key role in protein subcellular localization, stability, transcription, and enzymatic activity. Recent studies have highlighted the importance of SUMOylation in the inflammation and progression of numerous diseases. But little is known about the relationship between GMFB and SUMOylation. Here we first report that GMFB can be mono-SUMOylated at multiple sites by the covalent addition of a single SUMO1 protein, and identified K20, K35, K58, and K97 as major SUMO acceptor sites. We also found that SUMOylation leading to increased stability and trans-localization of GMFB. Furthermore, RNA-seq data and Real-time quantitative polymerase chain reaction (rt-qPCR) also indicated that the SUMOylated GMFB upregulated multiple pathways, including the cytokine-cytokin receptor interaction, NOD-like receptor signaling pathway, TNF signaling pathway, RIG-I-like receptor signaling pathway, and NF-kappa B signaling pathway. Our studies intend to provide a novel direction for the study into the biofunction of GMFB, SUMOylated GMFB and the mechanism, clinical therapy, and prognosis of inflammation-related RPE disorders like age-related macular degeneration (AMD) and diabetic retinopathy (DR).


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4371-4371
Author(s):  
Tengteng Yu ◽  
Liang Lin ◽  
Kenneth Wen ◽  
Lijie Xing ◽  
Jiye Liu ◽  
...  

Syndecan-1 (SDC1), also known as CD138, is a member of integral membrane heparin sulfate proteoglycans constantly expressed in plasma cells (PCs) and a primary diagnostic marker for human multiple myeloma (MM). We here further define new functions of SDC1 in the MM pathobiology. Firstly, flow cytometry and qRT-PCR analysis showed that SDC1 is expressed at relatively higher levels in AMO-1, U266, OPM2, H929, MM1S, and MM1R MM cells when compared with JJN3, RPMI 8226, and ANBL6 MM cells. SDC1 levels are comparable in paired MM cell lines sensitive or resistant to current anti-MM therapies including lenalidomide, pomalidomide, and bortezomib. Significantly increased SDC1 mRNA levels in advanced MM stages (p<0.05) were further correlated with elevated soluble SDC1 protein levels in patient serum by ELISA. As expected, higher soluble SDC1 was also detected in culture media (CM) from MM cell lines with higher mRNA levels. Next, the effects of SDC1 were studied by SDC1 knockout (KO) in OPM2, JJN3 and H929 cells via CRISPR/Ca9 gene modification, followed by RNA-Seq analysis. Neglectable shed SDC1 in CM of all SDC1 KO MM cells confirm null SDC1 expression. Expression of anti-apoptosis gene BCL2L1, cell cycle genes (CCND1, CCND2), and transcription factor RELA gene were decreased in SDC1 KO vs control MM cells. Permanent SDC1 KO cells were eventually derived, indicating additional SDC1 function besides its role in MM cell growth and survival. KEGG pathway analysis associated with genes downregulated following SDC1 KO showed biological processes (BPs) enrichment in ECM-receptor interaction (hsa04512; p< 0.001), cell adhesion molecules (hsa04514; p<0.001), focal adhesion (hsa04510; p<0.001), cytokine-cytokine receptor interaction (hsa04060; p=0.005), chemokine signaling pathway ( hsa04062; p=0.006), gap junction (hsa04540; p=0.002), axon guidance (hsa04360; p=0.016), JAK-STAT signaling pathway (hsa04630; p=0.026), lysosome (hsa04142; p=0.047).Specifically, IL-21R, related to JAK-STAT signaling pathway and cytokine-cytokine receptor interaction, was significantly decreased in SDC1 KO MM cells, as validated by qRT-PCR and human receptor array analysis. IL-21R contains the common cytokine-receptor gamma-chain shared by the receptors for IL-2, IL-4, IL-7, IL-9, and IL-15, indicating potential cross-talks between MM cells and surrounding immune cells via SDC1. Since its natural ligand IL-21 is mainly secreted by non-myeloma bone marrow (BM) accessory cells, SDC1 could also modulate interactions between myeloid lineages and MM cells via IL-21/IL-21R circuit in the BM microenvironment. Of note, other key MM antigens, i.e., CD38, BCMA, SLAMF7 were affected at mRNA levels in SDC1 KO vs control MM cells. Moreover, human receptor array data showed decreased expression in Flt-3L, DR6, Endoglin, GITR, HVEM, IL-2RG, IL-17RA, IL-21R, PECAM-1, PDGFRB, RAGE, Trappin-2 and µPAR in SDC1 KO MM cells. BPs through GO analysis in these downregulated receptors were cell activation (GO:0001775), cell surface receptor signaling pathway (GO:0007166), and immune system process (GO:0002370). KEGG analysis showed that those receptors molecular were enriched in cytokine-cytokine receptor interaction pathway (KEGG:04060).Consistent with RNA seq data, µPAR, an important factor of ARF6-dependent trafficking, was also found significantly downregulated in SDC1 KO MM cells. Since ARF6 activation regulates macropinocytosis, an essential metabolic pathway fueling Ras-driven cancer cells, these data suggest that SDC1 may involve in ARF6-dependent macropinocytosis in MM cells. ARF6 is induced by KRAS mutation, we thus checked macropinocytic index in KRAS-mutated MM cell lines. Increased macropinocytosis occur in KRAS-mutated MM cells (KMS28-BM, MM1S, MM1R) compared with KRAS WT OPM2 and KMS12-BM. Importantly, macropinocytosis was inhibited following SDC1 depletion in KRAS-mutated MM cells, indicating that SDC1 critically mediates KRAS-driven macropinocytosis in MM cells. These data highlight the requirements for SDC1 to mediate nutrient-scavenging macropinocytosis in MM cells, most prominently harboring KRAS-mutation. Taken together, our results identify new functions of SDC1 which are crucial to enhance myeloma cell fitness and adaptation to various conditions in the BM milieu, thereby further supporting SDC1 targeted immunotherapy in MM. Disclosures Munshi: Celgene: Consultancy; Amgen: Consultancy; Adaptive: Consultancy; Celgene: Consultancy; Janssen: Consultancy; Janssen: Consultancy; Takeda: Consultancy; Takeda: Consultancy; Oncopep: Consultancy; Oncopep: Consultancy; Abbvie: Consultancy; Abbvie: Consultancy; Amgen: Consultancy; Adaptive: Consultancy. Anderson:Celgene: Consultancy, Speakers Bureau; Sanofi-Aventis: Other: Advisory Board; Bristol-Myers Squibb: Other: Scientific Founder; Oncopep: Other: Scientific Founder; Amgen: Consultancy, Speakers Bureau; Janssen: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 477 ◽  
Author(s):  
Rui Cai ◽  
Guorong Tang ◽  
Que Zhang ◽  
Wenlong Yong ◽  
Wanrong Zhang ◽  
...  

Obesity is closely associated with numerous adipogenic regulatory factors, including coding and non-coding genes. Long noncoding RNAs (lncRNAs) play a major role in adipogenesis. However, differential expression profiles of lncRNAs in inguinal white adipose tissue (iWAT) between wild-type (WT) and ob/ob mice, as well as their roles in adipogenesis, are not well understood. Here, a total of 2809 lncRNAs were detected in the iWAT of WT and ob/ob mice by RNA-Sequencing (RNA-Seq), including 248 novel lncRNAs. Of them, 46 lncRNAs were expressed differentially in WT and ob/ob mice and were enriched in adipogenesis signaling pathways as determined by KEGG enrichment analysis, including the PI3K/AKT/mTOR and cytokine–cytokine receptor interaction signaling pathways. Furthermore, we focused on one novel lncRNA, which we named lnc-ORA (obesity-related lncRNA), which had a seven-fold higher expression in ob/ob mice than in WT mice. Knockdown of lnc-ORA inhibited preadipocyte proliferation by decreasing the mRNA and protein expression levels of cell cycle markers. Interestingly, lnc-ORA knockdown inhibited adipocyte differentiation by regulating the PI3K/AKT/mTOR signaling pathway. In summary, these findings contribute to a better understanding of adipogenesis in relation to lncRNAs and provide novel potential therapeutic targets for obesity-related metabolic diseases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuhan Yang ◽  
Minjie Chen ◽  
Zimeng Zhai ◽  
Yiqin Dai ◽  
Hao Gu ◽  
...  

Purpose: To elucidate the expression profile and the potential role of long non-coding ribonucleic acids (RNAs) (lncRNAs) in a dry eye disease (DED) model.Methods: A DED model was established in C57BL/6J mice with 0.2% benzalkonium chloride (BAC) twice a day for 14 days. The differentially expressed lncRNAs were detected by RNA-seq technology (Gene Expression Omnibus, GEO GSE186450) and the aberrantly expressed lncRNAs were further verified by RT-qPCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to predicate the related candidate genes and potential pathological pathways. Cells from a human corneal epithelial cell line (HCECs) were cultured under hyperosmolarity. The regulation of inflammatory factors by silencing potential targeted lncRNAs was verified in vitro in HCECs.Results: In our study, a significant increase in corneal fluorescence staining and a reduction in tear production were observed in DED mice at all follow-ups compared with the controls, and the differences were increasing over time. In total, 2,649 upregulated and 704 downregulated lncRNAs were identified in DED mice. We selected six aberrantly expressed and most abundant lncRNAs and performed RT-qPCR using the samples for RNA-seq. Chrnb2, Gabarapl2, and Usp31 were thereby confirmed as the most significantly altered lncRNAs. Pathway analysis revealed that the neuroactive ligand–receptor interaction signaling pathway was the most enriched, followed by the calcium signaling pathway and cytokine–cytokine receptor interaction. Following treatment of Gabarapl2 siRNA and Chrnb2 siRNA, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were significantly downregulated in the HCECs.Conclusion: Our study suggests that Chrnb2 and Gabarapl2 may be involved in the inflammation response by regulating TNF-α, IL-1β, and IL-6 in DED. These candidate lncRNAs may be both potential biomarkers and therapeutic targets for DED.


Sign in / Sign up

Export Citation Format

Share Document