scholarly journals A Novel lnc-RNA, Named lnc-ORA, Is Identified by RNA-Seq Analysis, and Its Knockdown Inhibits Adipogenesis by Regulating the PI3K/AKT/mTOR Signaling Pathway

Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 477 ◽  
Author(s):  
Rui Cai ◽  
Guorong Tang ◽  
Que Zhang ◽  
Wenlong Yong ◽  
Wanrong Zhang ◽  
...  

Obesity is closely associated with numerous adipogenic regulatory factors, including coding and non-coding genes. Long noncoding RNAs (lncRNAs) play a major role in adipogenesis. However, differential expression profiles of lncRNAs in inguinal white adipose tissue (iWAT) between wild-type (WT) and ob/ob mice, as well as their roles in adipogenesis, are not well understood. Here, a total of 2809 lncRNAs were detected in the iWAT of WT and ob/ob mice by RNA-Sequencing (RNA-Seq), including 248 novel lncRNAs. Of them, 46 lncRNAs were expressed differentially in WT and ob/ob mice and were enriched in adipogenesis signaling pathways as determined by KEGG enrichment analysis, including the PI3K/AKT/mTOR and cytokine–cytokine receptor interaction signaling pathways. Furthermore, we focused on one novel lncRNA, which we named lnc-ORA (obesity-related lncRNA), which had a seven-fold higher expression in ob/ob mice than in WT mice. Knockdown of lnc-ORA inhibited preadipocyte proliferation by decreasing the mRNA and protein expression levels of cell cycle markers. Interestingly, lnc-ORA knockdown inhibited adipocyte differentiation by regulating the PI3K/AKT/mTOR signaling pathway. In summary, these findings contribute to a better understanding of adipogenesis in relation to lncRNAs and provide novel potential therapeutic targets for obesity-related metabolic diseases.


2021 ◽  
Author(s):  
Jun Ren ◽  
Qing Zhi Hu ◽  
Ming Geng Niu ◽  
Jie Xia ◽  
Xing Wang ◽  
...  

Abstract Background: Resistance to oxaliplatin (OXA) is a major cause of recurrence in gastric cancer (GC) patients. ANXA1 has been found to participate in the regulation of diverse cellular functions in a variety of cell types including anti-inflammatory processes. We aimed to investigate the role of ANXA1 in autophagy and chemoresistance of GC cells. Methods: To identify the genes that regulate oxaliplatin resistance, we used RNA-seq to profile gene expression within oxaliplatin resistant GC and parental cells. Immunohistochemical and RT-qPCR was performed to detect ANXA1 expression in tissues of 2 cohorts of GC patients who received OXA-based chemotherapy. The chemoresistant effects of ANXA1 were assessed by cell viability, apoptosis, and autophagy assays. The effects of ANXA1 on autophagy were assessed by mRFP-GFP-LC3 and western blot. Gene set enrichment analysis (GSEA) and western blot was performed to detect the activity of PI3K/AKT/mTOR signaling under the regulation of ANXA1.Results: Based on RNA-seq profiling, ANXA1 was selected as a candidate that was upregulated in oxaliplatin resistant GC cells. Furthermore, we discovered that ANXA1 is upregulated in chemo-resistant GC tissues. Knockdown of ANXA1, via inhibiting autophagy, enhanced the sensitivity of OXA-resistant GC cells to OXA in vitro and in vivo. Mechanically, we identified that PI3K/AKT/mTOR signaling pathway was activated in the ANXA1 stably knockdown AGS/OXA cells, which leads to the down-regulation of autophagy.Conclusions: ANXA1 functions as a chemoresistant gene in GC cells by targeting the PI3K/AKT/mTOR signaling pathway and might be a prognostic predictor for GC patients who receive OXA-based chemotherapy.



BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ruining Liu ◽  
Gang Li ◽  
Haoli Ma ◽  
Xianlong Zhou ◽  
Pengcheng Wang ◽  
...  

Abstract Background Ventilator-induced diaphragmatic dysfunction (VIDD) is associated with weaning difficulties, intensive care unit hospitalization (ICU), infant mortality, and poor long-term clinical outcomes. The expression patterns of long noncoding RNAs (lncRNAs) and mRNAs in the diaphragm in a rat controlled mechanical ventilation (CMV) model, however, remain to be investigated. Results The diaphragms of five male Wistar rats in a CMV group and five control Wistar rats were used to explore lncRNA and mRNA expression profiles by RNA-sequencing (RNA-seq). Muscle force measurements and immunofluorescence (IF) staining were used to verify the successful establishment of the CMV model. A total of 906 differentially expressed (DE) lncRNAs and 2,139 DE mRNAs were found in the CMV group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine the biological functions or pathways of these DE mRNAs. Our results revealed that these DE mRNAs were related mainly related to complement and coagulation cascades, the PPAR signaling pathway, cholesterol metabolism, cytokine-cytokine receptor interaction, and the AMPK signaling pathway. Some DE lncRNAs and DE mRNAs determined by RNA-seq were validated by quantitative real-time polymerase chain reaction (qRT-PCR), which exhibited trends similar to those observed by RNA-sEq. Co-expression network analysis indicated that three selected muscle atrophy-related mRNAs (Myog, Trim63, and Fbxo32) were coexpressed with relatively newly discovered DE lncRNAs. Conclusions This study provides a novel perspective on the molecular mechanism of DE lncRNAs and mRNAs in a CMV model, and indicates that the inflammatory signaling pathway and lipid metabolism may play important roles in the pathophysiological mechanism and progression of VIDD.



2020 ◽  
Author(s):  
yutao guan ◽  
Fu-bin Zhang ◽  
Yan-qing Huang ◽  
Ling-ling Zhou ◽  
Wei-feng Li ◽  
...  

Abstract Background: Endometriosis is a progressive and benign disease characterized by the presence of endometrial glands and stroma tissue outside of the uterine cavity. Though endometriosis is a benign disease, it has the characteristics of malignant tumour growth. Abnormal expression of T-cadherin is involved in the occurrence and progression of many tumours. We aimed to investigate whether T-cadherin promotes the migration and invasion of endometriosis cells through the PI3K/AKT/mTOR signaling pathway. Methods: Ectopic and eutopic endometrial samples from 62 female patients with endometriosis and endometrial samples from 51 female patients without endometriosis were collected. The immortalized endometrial stromal cell line hEM15A was cultured. Real-time RT-PCR, immunohistochemistry and Western blot were used to detect the expression of T-cadherin, phospho-PI3K/Akt/mTOR and matrix metalloproteinase 2 (MMP-2). Transfection technology was employed to upregulate T-cadherin expression. The migration and invasion abilities of hEM15A cells were measured by the transwell assay with uncoated or Matrigel-coated membranes. Results: The mRNA and protein expression of T-cadherin was significantly decresed in the ectopic tissues of the patients with endometriosis, while the mRNA and protein expression in the eutopic endometrial tissues of the same patients did not significantly differ from that in the patients without endometriosis. The migration and invasion ability and phospho-PI3K/Akt/mTOR and MMP-2 expression levels were decreased in hEM15A cells with high T-cadherin expression compared with the corresponding parameters in the normal control group. However, everolimus and BEZ235 inhibited cell migration and invasion in cells with low T-cadherin expression, and weakened overexpression of T‑cadherin significantly attenuated MMP-2 protein expression. Conclusion: Loss of T-cadherin promotes cell migration and invasion in endometriosis via the PI3K/AKT/mTOR signalling pathway.



2020 ◽  
Vol 21 (8) ◽  
pp. 2851
Author(s):  
Yasuyo Urasaki ◽  
Cody Beaumont ◽  
Jeffery N. Talbot ◽  
David K. Hill ◽  
Thuc T. Le

This study reports a relationship between Akt3 expression and tissue-specific regulation of the pI3K/Akt/mTOR signaling pathway by copaiba essential oil. Akt3, a protein kinase B isoform important for the regulation of neuronal development, exhibited differential expression levels in cells of various origins. In neuronal and microglial cells, where Akt3 is present, copaiba essential oil positively regulated the pI3K/Akt/mTOR signaling pathway. In contrast, in liver cells and T lymphocytes, where Akt3 is absent, copaiba essential oil negatively regulated the pI3K/Akt/mTOR signaling pathway. The expression of Akt3 via plasmid DNA in liver cells led to positive regulatory effects by copaiba essential oil on the pI3K/Akt/mTOR signaling pathway. In contrast, inhibition of Akt3 expression in neuronal cells via small interfering RNA molecules targeting Akt3 transcripts abrogated the regulatory effects of copaiba essential oil on the pI3K/Akt/mTOR signaling pathway. Interestingly, Akt3 expression did not impact the regulatory effects of copaiba essential oil on other signaling pathways. For example, copaiba essential oil consistently upregulated the MAPK and JAK/STAT signaling pathways in all evaluated cell types, independent of the Akt3 expression level. Collectively, the data indicated that Akt3 expression was required for the positive regulatory effects of copaiba essential oil, specifically on the pI3K/Akt/mTOR signaling pathway.



2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yanmin Lyu ◽  
Xiangjing Chen ◽  
Qing Xia ◽  
Shanshan Zhang ◽  
Chengfang Yao

Background. Pinellia ternata (PT), a medicinal plant, has had an extensive application in the treatment of asthma in China, whereas its underlying pharmacological mechanisms remain unclear. Methods. Firstly, a network pharmacology method was adopted to collect activated components of PT from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets of PT were assessed by exploiting the PharmMapper website; asthma-related targets were collected from the OMIM website, and target-target interaction networks were built. Secondly, critical nodes exhibiting high possibility were identified as the hub nodes in the network, which were employed to conduct Gene Ontology (GO) comment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis. Finally, the tissue expression profiles of key candidate genes were identified by the Gene Expression Omnibus (GEO) database, and the therapeutic effect of PT was verified by an animal experiment. Results. 57 achievable targets of PT on asthma were confirmed as hub nodes through using the network pharmacology method. As revealed from the KEGG enrichment analysis, the signaling pathways were notably enriched in pathways of the T-cell receptor signaling pathway, JAK-STAT signaling pathway, and cytokine-cytokine receptor interaction. The expression profiles of candidate genes including Mmp2, Nr3c1, il-10, il-4, il-13, il-17a, il-2, tlr4, tlr9, ccl2, csf2, and vefgα were identified. Moreover, according to transcriptome RNA sequencing data from lung tissues of allergic mice compared to normal mice, the mRNA level of Mmp2 and il-4 was upregulated ( P < 0.001 ). In animal experiments, PT could alleviate the allergic response of mice by inhibiting the activation of T-helper type 2 (TH2) cells and the expression of Mmp2 and il-4. Conclusions. Our study provides candidate genes that may be either used for future studies related to diagnosis/prognosis or as targets for asthma management. Besides, animal experiments showed that PT could treat asthma by regulating the expression of Mmp2 and il-4.



Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4142-4142
Author(s):  
Nancy S. Day ◽  
Janet Ayello ◽  
Ian Waxman ◽  
Evan Shereck ◽  
Catherine McGuinn ◽  
...  

Abstract The prognosis and treatment of both major forms of advanced childhood B-NHL (BL and DLBCL) is similar with short and intensive multi-agent chemotherapy (Cairo/Patte et al., Blood, 2007 and Patte/Cairo et al., Blood, 2007). Despite both BL and DLBCL being germinal center derived, our recent cytogenetic results of BL vs DLBCL in the FAB LMB 96 study have demonstrated significant differences in secondary chromosomal aberrations in BL vs DLBCL and a differential prognosis based on secondary cytogenetic findings (Poirel/Cairo/Patte, Blood, 2003a). Thus, we sought to identify genes that could uniquely differentiate childhood BL vs DLBCL and discover potential genetic mechanisms of differential molecular pathogenesis and to determine the signal pathways that contribute to the genetic disparity between these two histological types of childhood B-NHL. Nine BL (7 patient samples and 2 cell lines, Raji and Ramos) and 3 DLBCL (1 patient sample and 2 cell lines, Pfeiffer and DB) were compared. Total RNA was isolated, reverse transcribed to cDNA biotinylated cRNA and hybridized to Affymetrix U133A_2 as we have previously described (Jiang/Cairo et al., Journal of Immunology, 2004). Data were analyzed using Agilent GeneSpring 7.3. Signal intensities were compared using one way ANOVA and Welch Test for statistical analysis. Two-fold changes between BL and DLBCL were considered as significant (p<0.05). KEGG Pathways were evaluated for the genes identified. There were 120 genes over-expressed and 217 genes under-expressed in BL vs DLBCL. BL expressed significantly higher level of Ki-67 (a measure of lymphoma-cell proliferation) than DLBCL (2.68F). BL also expressed higher level of the pro-apoptotic gene, p53 compared to DLBCL (1.46F). Over-expressed genes in BL vs DLBCL included TNFSF10 (11.87F), RHOQ (3.16F), PIP5K1B (5.22F) among many others. The genes significantly under-expressed in BL vs DLBCL included PIGL (0.45F), Inositol (myo)-1 (or 4)-monophosphatase 1 (IMPA1; 0.28F), cAMP-dependent regulatory type I, alpha protein kinase (PRKAR1A; 0.37F) among many others. TNFSF10 induces apoptosis in transformed and tumor cells and is known to participate in pathways including cytokine-cytokine receptor interaction and induction of apoptosis through DR3 and DR4/5 death receptors. PIP5K1B is involved in the Rho signaling pathway and PIGL catalyzes the second step of glycosylphosphatidylinositol (GPI) biosynthesis. Since activation of IL3R-mediated cAMP-dependent protein kinase leads to increased cell survival, we searched gene expression profiles in BL vs DLBCL that were involved in IL signaling pathways. The genes that were identified to be over-expressed in BL vs DLBCL included IL2RG (2.24F), IL8RB, IL18 receptor accessory protein (IL18RAP), IL18, IL18R1, and IL1R2 (natural log values of 11.11, 22.95, 2.16, 1.73 and 11.84, respectively in BL vs non-detectable values in DLBCL). Taken together, since IL1, IL2, IL8, and IL18 all belong to IL1 super family, these results suggest significant involvement of TNF (TRAIL) and IL1 super family via cytokine-cytokine receptor interaction and activation of the Rho signaling pathway in Burkitt vs DLBCL lymphomagenesis.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi-Zhou Tan ◽  
Xin-Yue Xu ◽  
Ji-Min Dai ◽  
Yuan Yin ◽  
Xiao-Tao He ◽  
...  

Abstract Background Stem cells that have undergone long-term ex vivo expansion are most likely functionally compromised (namely cellular senescence) in terms of their stem cell properties and therapeutic potential. Due to its ability to attenuate cellular senescence, melatonin (MLT) has been proposed as an adjuvant in long-term cell expansion protocols, but the mechanism underlying MLT-induced cell rejuvenation remains largely unknown. Methods Human periodontal ligament stem cells (PDLSCs) were isolated and cultured ex vivo for up to 15 passages, and cells from passages 2, 7, and 15 (P2, P7, and P15) were used to investigate cellular senescence and autophagy change in response to long-term expansion and indeed the following MLT treatment. Next, we examined whether MLT could induce cell rejuvenation by restoring the autophagic processes of damaged cells and explored the underlying signaling pathways. In this context, cellular senescence was indicated by senescence-associated β-galactosidase (SA-β-gal) activity and by the expression of senescence-related proteins, including p53, p21, p16, and γ-H2AX. In parallel, cell autophagic processes were evaluated by examining autophagic vesicles (by transmission electronic microscopy), autophagic flux (by assessing mRFP-GFP-LC3-transfected cells), and autophagy-associated proteins (by Western blot assay of Atg7, Beclin-1, LC3-II, and p62). Results We found that long-term in vitro passaging led to cell senescence along with impaired autophagy. As expected, MLT supplementation not only restored cells to a younger state but also restored autophagy in senescent cells. Additionally, we demonstrated that autophagy inhibitors could block MLT-induced cell rejuvenation. When the underlying signaling pathways involved were investigated, we found that the MLT receptor (MT) mediated MLT-related autophagy restoration by regulating the PI3K/AKT/mTOR signaling pathway. Conclusions The present study suggests that MLT may attenuate long-term expansion-caused cellular senescence by restoring autophagy, most likely via the PI3K/AKT/mTOR signaling pathway in an MT-dependent manner. This is the first report identifying the involvement of MT-dependent PI3K/AKT/mTOR signaling in MLT-induced autophagy alteration, indicating a potential of autophagy-restoring agents such as MLT to be used in the development of optimized clinical-scale cell production protocols.



2020 ◽  
Author(s):  
Jianjun Wu ◽  
Peian Cai ◽  
Zhenhui Lu ◽  
Zhi Zhang ◽  
Xixi He ◽  
...  

Abstract Background: The differentiation of bone mesenchymal stem cells (BMSCs) into adipogenesis (AD) rather than osteogenesis (OS) is an important pathological feature of osteoporosis. Illuminating the detailed mechanisms of the differentiation of BMSCs into OS and AD would contribute to the interpretation of osteoporosis pathology.Methods: To identify the regulated mechanism in lineage commitment of the BMSCs into OS and AD in the early-stages, the gene expression profiles with temporal series were downloaded to reveal the distinct fates when BMSCs adopt a committed lineage. For both OS and AD lineages, the profiles of day 2–4 were compared with day 0 to screen the differentially expressed genes (DEGs), respectively. Next, the functional enrichment analysis was utilized to find out the biological function, and Protein-Protein Interaction network to predict the central genes. Finally, experiments were performed to verify our finding.Results: FoxO signaling pathway with central genes like FoxO3, IL6 and CAT, is the crucial mechanism of OS, while Rap1 signaling pathway of VEGFA and FGF2 enrichment is more significant for AD. Besides, PI3K-Akt signaling pathway might serves as the latent mechanism about the initiation of differentiation of BMSCs into multiple lineages.Conclusion: Above hub genes and early-responder signaling pathways control osteogenic and adipogenic fates of BMSCs, which maybe mechanistic models clarifying the changes of bone metabolism in the clinical progress of osteoporosis. The findings provide a crucial reference for the prevention and therapy of osteoporosis.



2021 ◽  
Vol 28 ◽  
Author(s):  
Bei Wang ◽  
Wen Xu ◽  
Yuxuan Cai ◽  
Jinlan Chen ◽  
Chong Guo ◽  
...  

Background: Long non-coding RNAs (lncRNA) have influenced numerous biology processes, which has provoked great interest. Not only that, LncRNA DUXAP8 mediates tumorigenesis by affecting the activity of miRNAs, signaling pathways, and oncogene. Methods: The functions of DUXAP8 have been summarized by reading relevant articles on PubMed. Results: lncRNA DUXAP8 acts oncogene in most tumors. The abnormal over-expression is associated with the proliferation, invasion, migration, anti-autophagy of tumors. DUXAP8 exerts promotion on Akt / mTOR signaling pathway, facilitating the occurrence of tumors. Furthermore, DUXAP8 affects the activity of miRNAs and proteins, showing its significant potential as a therapeutic target in human cancers. Conclusion: LncRNA DUXAP8 has been identified as an indispensable therapeutic target of the tumors, providing clinical treatment plans.



2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Jianjun Wu ◽  
Peian Cai ◽  
Zhenhui Lu ◽  
Zhi Zhang ◽  
Xixi He ◽  
...  

Abstract Background The differentiation of bone mesenchymal stem cells (BMSCs) into adipogenesis (AD) rather than osteogenesis (OS) is an important pathological feature of osteoporosis. Illuminating the detailed mechanisms of the differentiation of BMSCs into OS and AD would contribute to the interpretation of osteoporosis pathology. Methods To identify the regulated mechanism in lineage commitment of the BMSCs into OS and AD in the early stages, the gene expression profiles with temporal series were downloaded to reveal the distinct fates when BMSCs adopt a committed lineage. For both OS and AD lineages, the profiles of days 2–4 were compared with day 0 to screen the differentially expressed genes (DEGs), respectively. Next, the functional enrichment analysis was utilized to find out the biological function, and protein-protein interaction network to predict the central genes. Finally, experiments were performed to verify our finding. Results FoxO signaling pathway with central genes like FoxO3, IL6, and CAT is the crucial mechanism of OS, while Rap1 signaling pathway of VEGFA and FGF2 enrichment is more significant for AD. Besides, PI3K-Akt signaling pathway might serve as the latent mechanism about the initiation of differentiation of BMSCs into multiple lineages. Conclusion Above hub genes and early-responder signaling pathways control osteogenic and adipogenic fates of BMSCs, which maybe mechanistic models clarifying the changes of bone metabolism in the clinical progress of osteoporosis. The findings provide a crucial reference for the prevention and therapy of osteoporosis.



Sign in / Sign up

Export Citation Format

Share Document