scholarly journals Characteristics in gut microbiome is associated with chemotherapy-induced pneumonia in pediatric acute lymphoblastic leukemia

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaoming Liu ◽  
Yao Zou ◽  
Yingchi Zhang ◽  
Lipeng Liu ◽  
Yongjuan Duan ◽  
...  

Abstract Background Children with acute lymphoblastic leukemia (ALL) undergoing chemotherapy experience a relatively high risk of infection. And the disturbance of gut microbiota is generally believed to impair intestinal barrier function and may induce bacterial infections and inflammation. The study aimed to investigate the alterations in the gut microbiota and assess its relationship with chemotherapy-induced pneumonia in pediatric ALL patients. Methods We conducted a case–control study with 14 cases affected by pneumonia and 44 unaffected subjects and characterized the physiological parameters and gut microbiota by microarray-based technique. Results There were significant differences in α- and β-diversity in the affected group compared with the control group. At species level, the LEfSe analysis revealed that Enterococcus malodoratus, Ochrobactrum anthropi and Actinomyces cardiffensis were significantly abundant in the affected subjects. A receiver operating characteristic (ROC) curve yielded the area under the curve (AUC) of 0.773 for classification between the two groups. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in the bacterial secretion system were more enriched in the affected group than in the control group. Conclusions Gut microbiota alteration was associated with chemotherapy-induced pneumonia in pediatric ALL patients, which provided a new perspective on the personalized clinical care of pediatric ALL.

2021 ◽  
Vol 8 ◽  
Author(s):  
Yongdi Zeng ◽  
Zirui Wang ◽  
Tiande Zou ◽  
Jun Chen ◽  
Guanhong Li ◽  
...  

This study aimed to investigate the effects of dietary bacteriophage supplementation on growth performance, intestinal morphology, barrier function, and intestinal microbiota of weaned piglets fed antibiotic-free diet. A total of 120 weaned piglets were allotted to four dietary treatments with five pens/treatment and six piglets/pen in a 21-d feeding trial. The control diet was supplemented with 25 mg/kg quinocetone and 11.25 mg/kg aureomycin in the basal diet, while the three treatment diets were supplemented with 200, 400, or 600 mg/kg bacteriophage in the basal diet, respectively. There was no difference for growth performance and all measured indices of serum and intestinal tissues between 200 mg/kg bacteriophage group and the control group with antibiotics (P > 0.05). More importantly, compared with the control diet, dietary 400 mg/kg bacteriophage inclusion increased average daily gain and average daily feed intake, and decreased feed/gain ratio and diarrhea incidence of weaned piglets (P < 0.05). Also, piglets fed 400 mg/kg bacteriophage had elevated villi height (VH) in jejunum and ileum, reduced crypt depth (CD) in jejunum and ileum, and elevated VH/CD ratio in duodenum, jejunum and ileum (P < 0.05). Compared to the control group, piglets fed 400 mg/kg bacteriophage had lower interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and higher interleukin-10 (IL-10) concentration in serum, and higher secretory immunoglobulin A (sIgA), intestinal trefoil factor (ITF), and tumor growth factor-alpha (TGF-α) content in the ileal mucosa (P < 0.05). Besides, dietary addition with 400 mg/kg bacteriophage decreased the D-lactate concentration and diamine oxidase (DAO) activity in serum, and increased the relative mRNA expression of ZO-1, Claudin-1, Occludin, TLR2, TLR4, and TLR9, as well as the relative protein expression of Occludin in the jejunum (P < 0.05). However, the growth performance and all analyzed parameters in serum and intestinal tissues were not further improved when piglets fed 600 vs. 400 mg/kg bacteriophage (P > 0.05). MiSeq sequencing analysis showed that bacteriophage regulated the microbial composition in caecum digesta, as indicated by higher observed_species, Chao1, and ACE richness indices, as well as changes in the relative abundance of Firmicutes, Bacteroidetes, and Tenericutes (P < 0.05). Collectively, 400 mg/kg bacteriophage can be used as an antibiotics alternative for promoting the growth of weaned piglets. The underlying mechanism is associated with a positive effect of bacteriophage on intestinal inflammation, intestinal barrier function and gut microbiota in weaned piglets.


2021 ◽  
Vol 8 ◽  
Author(s):  
Pan Huang ◽  
Anqi Jiang ◽  
Xuxin Wang ◽  
Yan Zhou ◽  
Weihong Tang ◽  
...  

The aim of this study was to determine the effects of long-term Nicotinamide mononucleotide (NMN) treatment on modulating gut microbiota diversity and composition, as well as its association with intestinal barrier function. In this study, C57BL/6J mice were fed different concentrations of NMN, and their feces were collected for detection of 16S rDNA and non-targeted metabolites to explore the effects of NMN on intestinal microbiota and metabolites. The results revealed that NMN increased the abundance of butyric acid-producing bacteria (Ruminococcae_UCG-014 and Prevotellaceae_NK3B31_group) and other probiotics (Akkermansia muciniphila), while the abundance of several harmful bacteria (Bilophila and Oscillibacter) were decreased after NMN treatment. Meanwhile, the level of bile acid-related metabolites in feces from the G1 group (0.1 mg/ml) was significantly increased compared to the control group, including cholic acid, taurodeoxycholic acid, taurocholic acid, glycocholic acid, and tauro-β-muricholic acid. In addition, long-term NMN treatment affected the permeability of the intestinal mucosa. The number of goblet cells and mucus thickness increased, as well as expression of tight junction protein. These results demonstrate that NMN reduced intestinal mucosal permeability and exerts a protective effect on the intestinal tract. This study lays the foundation for exploring NMN's utility in clinical research.


2020 ◽  
Author(s):  
Jin Jipeng ◽  
Jianlei Jia ◽  
Liping Zhang ◽  
Qian Chen ◽  
Xiaoyan Zhang ◽  
...  

Abstract Background: Dietary intervention has been reported to improve intestinal health. The intestinal microbiota of newborn animals plays a fundamental role in the development of intestinal function and the innate immune system. However, little is currently known about dietary interventions in the gut microbiota and barrier function of livestock, especially suckling Bamei piglets. To this end, we studied the effect of early dietary supplementation on intestinal bacterial communities and intestinal barrier function in piglets.Results: 10 purebred Bamei sows were randomly allocated into two groups. In group one, the piglets received a supplementary milk replacer on day 7 of age, whereas the other control group was allowed sow’s milk alone. At 21 days, 18 and 17, respectively, piglets in each group of average weight were randomly selected and sacrificed. Tissue and digesta samples were collected from the jejunum to evaluate differences in the microbiome-metabolome and the mRNA expression of inflammatory cytokines (TLR4, TNFα and IL-8) and barrier proteins (ZO-1, Occludin and Claudin-1). Sequencing of 16S rRNA revealed that ES improved the gut microbiome composition of Bamei suckling piglets. The relative abundances of some bacterial species such as Lactobacillales, Romboutsia, Actinobacillus, Bacteroides were significantly reduced in the ES group. Metabolomics analysis indicated that 23 compounds were enriched and 35 compounds decreased in the ES group. And correlation analysis demonstrated that some gut bacterial genera were highly correlated with altered gut microbiota-related metabolites. Meanwhile, ES of Bamei suckling piglets altered the gene expression of inflammatory cytokine and barrier protein in the jejunum. Conclusions: In summary, these results provide important insights on the relationships between jejunal microbiota and related metabolites, and jejunal barrier function during the early life of Bamei suckling piglets.


2018 ◽  
Vol 25 (24) ◽  
pp. 2811-2825 ◽  
Author(s):  
Raffaella Franca ◽  
Natasa K. Kuzelicki ◽  
Claudio Sorio ◽  
Eleonora Toffoletti ◽  
Oksana Montecchini ◽  
...  

Acute lymphoblastic leukemia (ALL) is the most common hematologic malignancy in children, characterized by an abnormal proliferation of immature lymphoid cells. Thanks to risk-adapted combination chemotherapy treatments currently used, survival at 5 years has reached 90%. ALL is a heterogeneous disease from a genetic point of view: patients’ lymphoblasts may harbor in fact several chromosomal alterations, some of which have prognostic and therapeutic value. Of particular importance is the translocation t(9;22)(q34;q11.2) that leads to the formation of the BCR-ABL1 fusion gene, encoding a constitutively active chimeric tyrosine kinase (TK): BCR-ABL1 that is present in ~3% of pediatric ALL patients with B-immunophenotype and is associated with a poor outcome. This type of ALL is potentially treatable with specific TK inhibitors, such as imatinib. Recent studies have demonstrated the existence of a subset of BCR-ABL1 like leukemias (~10-15% of Bimmunophenotype ALL), whose blast cells have a gene expression profile similar to that of BCR-ABL1 despite the absence of t(9;22)(q34;q11.2). The precise pathogenesis of BCR-ABL1 like ALL is still to be defined, but they are mainly characterized by the activation of constitutive signal transduction pathways due to chimeric TKs different from BCR-ABL1. BCR-ABL1 like ALL patients represent a group with unfavorable outcome and are not identified by current risk criteria. In this review, we will discuss the design of targeted therapy for patients with BCR-ABL1 like ALL, which could consider TK inhibitors, and discuss innovative approaches suitable to identify the presence of patient’s specific chimeric TK fusion genes, such as targeted locus amplification or proteomic biosensors.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jianguo Liu ◽  
Liehui Xiao ◽  
Hezhongrong Nie ◽  
Yong Pan ◽  
Yan Liu ◽  
...  

Abstract Objective To investigate the impact of microecological preparation combined with modified low-carbon diet on the glucolipid metabolism and cardiovascular complication in obese patients. Methods From August 2017 to July 2020, 66 obese patients were recruited, and administrated with an modified low-carbon diet with (group A) or without (Group B) microecology preparation and a balanced diet in control group (group C) for 6 months. Meanwhile, 20 volunteers administrated with a balanced diet were recruited as the healthy control group (group D). Results After 6-month intervention, obese subjects in group A and B showed significant improvement of body and liver fat mass, reduction of serum lipid levels, intestinal barrier function markers, insulin resistance index (IRI), high blood pressure (HBP) and carotid intima thickness, as compared with subjects in group C. More importantly, subjects in group A had better improvement of vascular endothelial elasticity and intimal thickness than subjects in group B. However, these intervention had no effect on carotid atherosclerotic plaque. Conclusion Administration of microecological preparation combined with modified low-carbon diet had better improvement of intestinal barrier function, glucose and lipid metabolism, and cardiovascular complications than low-carbon diet in obese patients, but the effect of a simple low-carb diet on carotid atherosclerotic plaque need to be further addressed.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 959 ◽  
Author(s):  
Jefferson Antônio Leite ◽  
Gabriela Pessenda ◽  
Isabel C. Guerra-Gomes ◽  
Alynne Karen Mendonça de Santana ◽  
Camila André Pereira ◽  
...  

Pattern recognition receptors (PRRs), such as Nod2, Nlrp3, Tlr2, Trl4, and Tlr9, are directly involved in type 1 diabetes (T1D) susceptibility. However, the role of the cytosolic DNA sensor, AIM2, in T1D pathogenesis is still unknown. Here, we demonstrate that C57BL/6 mice lacking AIM2 (AIM2−/−) are prone to streptozotocin (STZ)-induced T1D, compared to WT C57BL/6 mice. The AIM2−/− mice phenotype is associated with a greater proinflammatory response in pancreatic tissues, alterations in gut microbiota and bacterial translocation to pancreatic lymph nodes (PLNs). These alterations are related to an increased intestinal permeability mediated by tight-junction disruption. Notably, AIM2−/− mice treated with broad-spectrum antibiotics (ABX) are protected from STZ-induced T1D and display a lower pancreatic proinflammatory response. Mechanistically, the AIM2 inflammasome is activated in vivo, leading to an IL-18 release in the ileum at 15 days after an STZ injection. IL-18 favors RegIIIγ production, thus mitigating gut microbiota alterations and reinforcing the intestinal barrier function. Together, our findings show a regulatory role of AIM2, mediated by IL-18, in shaping gut microbiota and reducing bacterial translocation and proinflammatory response against insulin-producing β cells, which ultimately results in protection against T1D onset in an STZ-induced diabetes model.


2021 ◽  
Author(s):  
Maha Saleh ◽  
Mohamed Khalil ◽  
Mona S. Abdellateif ◽  
Emad Ebeid ◽  
Eman Z. Kandeel

Abstract Background: Matrix metalloproteinases (MMPs) play a crucial role in cancer progression and metastasis, however their role in pediatric Acute lymphoblastic leukemia (ALL) is still unrevealed.Methods: The diagnostic, prognostic and predictive value of tissue inhibitor of metalloproteinase (TIMP-1), MMP-2, MMP-9 and CD34+CD38- CSCs were assessed in bone marrow (BM) samples of 76 ALL children using Flow Cytometry analysis. Results: There was a significant increase in TIMP-1 [1.52 (0.41-10) versus 0.91(0.6-1.12); respectively, P<0.001], and CSCs CD84+CD38- [1 (0.03-18.6) versus 0.3 (0.01-1.1), P<0.001] expression in ALL patients compared to controls. While there were no significant differences regarding MMP-2 and MMP-9 expression between the two groups. The sensitivity, specificity, AUC of MMP-2 were (80.3%, 53.3% and 0.568, P=0.404), and that of MMP-9 were (53.9%, 40% and 0.660, P=0.053). While that of TIMP-1 were (78.9%, 100% and 0.892, P<0.001), and that of CSCs CD34+ CD38- were (78.9%, 73.3% and 0.855, P<0.001). There was a significant association between MMP-2 overexpression and MRD at day-15, increased BM blast cell count at diagnosis and at day-15, (P=0.020, P=0.047 and P=0.001). Increased TIMP-1 expression associated with the high-risk disease (P<0.001), increased BM blast cell count at diagnosis and at day-15 (P=0.033 and P=0.001), as well as MRD at day 15 and day 42 (P<0.001 for both). CD34+CD38- CSCs associated with MRD at day-15, increased BM blast cell count at diagnosis and at day-15 (P=0.015, P=0.005 and P=0.003). TIMP-1 overexpression associated with shorter DFS and OS rates (P=0.009 and P=0.048). Multivariate logistic regression analysis showed that both TIMP-1 [OR: 4.224, P=0.046], and CD34+CD38- CSCs [OR: 6.873, P=0.005] are independent diagnostic factors for pediatric ALL.Conclusion: TIMP-1 and CD34+CD38- CSCs could be useful independent diagnostic markers for pediatric ALL. Also, TIMP-1 is a promising prognostic marker for poor outcome of the patients.


2020 ◽  
Vol 11 (12) ◽  
pp. 10839-10851
Author(s):  
Zhi-jie Ma ◽  
Huan-jun Wang ◽  
Xiao-jing Ma ◽  
Yue Li ◽  
Hong-jun Yang ◽  
...  

Ginger extract showed beneficial effects on rats with antibiotic-associated diarrhea, and the underlying mechanism might be associated with the recovery of gut microbiota and intestinal barrier function.


2020 ◽  
pp. 1-3
Author(s):  
Partha Sarathi Roy ◽  
Munlima Hazarika ◽  
Rakesh Kumar Mishra ◽  
BhargabJyoti Saikia ◽  
Gaurav Kumar

Acute lymphoblastic leukemia (ALL) is a highly curable childhood cancer with a survival rate of nearly 80% in developed countries but is around 45% in developing countries. This retrospective study analyzed the association between demographic and socioeconomic factors with survival in pediatric ALL. All confirmed cases of pediatric ALL (age <18 years) registered at Dr. B Borooah Cancer Institute between 2010 to 2017 were analyzed using data collected from hospital-based cancer registry and case records. Seventy-five confirmed cases of pediatrics ALL were eligible for the study. The median age of presentation was six years with a male: female ratio 1.9:1. Overall survival at 4-years was 43.8%, with a median survival of 25 months. A trend for higher 4-year overall survival was seen in female children (54.1% versus 37.9%, p=0.097). Patients from rural areas (44% versus 39.5%, p=0.308), with higher maternal education (83.3% versus 41.1%, p=0.161) and patients who did not abandon treatment (49.1% versus 31.2%, p=0.497) had better survival, but the differences were not significant. Four years overall survival in upper-middle, lower-middle, upper-lower, and lower class were 85.7%, 74.9%, 38.1%, and 7.7% respectively (upper-middleversus lower socioeconomic class, p=0.0001).Multivariate analyses confirmed a statistically significant relationship between socioeconomic status and survival, with the upper-middle group had a 90% decreased risk of death compared to the lower socioeconomic group. There is an urgent need for a proper definition of the problems of childhood ALL to introduce appropriate policies for improving survival in developing countries.


Sign in / Sign up

Export Citation Format

Share Document