scholarly journals Environmental sustainability in endodontics. A life cycle assessment (LCA) of a root canal treatment procedure

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Brett Duane ◽  
Linnea Borglin ◽  
Stephanie Pekarski ◽  
Sophie Saget ◽  
Henry Fergus Duncan

Abstract Background To analyse via life cycle analysis (LCA) the global resource use and environmental output of the endodontic procedure. Methodology An LCA was conducted to measure the life cycle of a standard/routine two-visit RCT. The LCA was conducted according to the International Organization of Standardization guidelines; ISO 14040:2006. All clinical elements of an endodontic treatment (RCT) were input into OpenLCA software using process and flows from the ecoinvent database. Travel to and from the dental clinic was not included. Environmental outputs included abiotic depletion, acidification, freshwater ecotoxicity/eutrophication, human toxicity, cancer/non cancer effects, ionizing radiation, global warming, marine eutrophication, ozone depletion, photochemical ozone formation and terrestrial eutrophication. Results An RCT procedure contributes 4.9 kg of carbon dioxide equivalent (CO2 eq) emissions. This is the equivalent of a 30 km drive in a small car. The main 5 contributors were dental clothing followed by surface disinfection (isopropanol), disposable bib (paper and plastic), single-use stainless steel instruments and electricity use. Although this LCA has illustrated the effect endodontic treatment has on the environment, there are a number of limitations that may influence the validity of the results. Conclusions The endodontic team need to consider how they can reduce the environmental burden of endodontic care. One immediate area of focus might be to consider alternatives to isopropyl alcohol, and look at paper, single use instrument and electricity use. Longer term, research into environmentally-friendly medicaments should continue to investigate the replacement of current cytotoxic gold standards with possible natural alternatives. Minimally invasive regenerative endodontics techniques designed to stimulate repair or regeneration of damaged pulp tissue may also be one way of improving the environmental impact of an RCT.

Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 110 ◽  
Author(s):  
Camilla Tua ◽  
Laura Biganzoli ◽  
Mario Grosso ◽  
Lucia Rigamonti

The European packaging market is forecast to grow 1.9% annually in the next years, with an increasing use of returnable packages. In this context, it is important to assess the real environmental effectiveness of the packaging re-use practice in terms of environmental impacts. This life cycle assessment aims to evaluate the environmental performances of reusable plastic crates (RPCs), which are used for the distribution of 36% of fruit and vegetables in Italy. RPCs can be re-used several times after a reconditioning process, i.e., inspection, washing, and sanitization with hot water and chemicals. The analysis was performed considering 12 impact categories, as well as the cumulative energy demand indicator and a tailor-made water consumption indicator. The results show that when the RPCs are used for less than 20 deliveries, the impacts of the life cycle are dominated by the manufacturing stage. By increasing the number of deliveries, the contribution of the reconditioning process increases, reaching 30–70% of the overall impacts for 125 uses. A minimum of three deliveries of the RPCs is required in order to perform better than an alternative system where crates of the same capacity (but 60% lighter) are single-use. The same modeling approach can be used to evaluate the environmental sustainability of other types of returnable packages, in order to have a complete overview for the Italian context and other European countries.


2020 ◽  
Vol 1 ◽  
pp. 1647-1656
Author(s):  
R. Santi ◽  
G. Elegir ◽  
B. Del Curto

AbstractWhen assessing the sustainability of a product, an ideal life cycle is considered which could include the “Use” and “End of Life” phases. Does human behaviour affect the environmental sustainability? This paper intends to propose a methodological framework for assessing sustainable behavioural scenarios. The framework will be then developed in a specific case study on Compostable Single Use Products (CSUPs), with the aim of designing the identity of compostable materials for packaging in order to guide consumers to behave in a sustainable way in CSUPs disposal phase.


2021 ◽  
Vol 1 ◽  
pp. 1333-1342
Author(s):  
Núria Boix Rodríguez ◽  
Marco Marconi ◽  
Claudio Favi ◽  
Giovanni Formentini

AbstractFace masks are currently considered essential devices that people must wear today and in the near future, until the COVID-19 pandemic will be completely defeated through specific medicines and vaccines. Such devices are generally made of thermoplastic polymers, as polypropylene and polyethylene and are single use products. Even if in this period the sanitary emergency must have the maximum priority, the world society should not completely forget the environmental problem that are causing more and more obvious climate changes with correlated damages to ecosystems and human health. Despite the well-known correlation among anti-COVID protective equipment (or more generally medical devices) and environmental issues, the Life Cycle Assessment (LCA) and eco-design-based studies in this field is very scarce. The present study aims to derive the most important environmental criticalities of such products, by using LCA and product circularity indicators of five different common masks. The final aim is to provide eco-design guidelines, useful to design new face masks by preventing negative impact on the environment.


2021 ◽  
Vol 11 (12) ◽  
pp. 5519
Author(s):  
Rui Carvalho ◽  
Alberto Rodrigues da Silva

Sustainable development was defined by the UN in 1987 as development that meets the needs of the present without compromising the ability of future generations to meet their own needs, and this is a core concept in this paper. This work acknowledges the three dimensions of sustainability, i.e., economic, social, and environmental, but its focus is on this last one. A digital twin (DT) is frequently described as a physical entity with a virtual counterpart, and the data, connections between the two, implying the existence of connectors and blocks for efficient and effective data communication. This paper provides a meta systematic literature review (SLR) (i.e., an SLR of SLRs) regarding the sustainability requirements of DT-based systems. Numerous papers on the subject of DT were also selected because they cited the analyzed SLRs and were considered relevant to the purposes of this research. From the selection and analysis of 29 papers, several limitations and challenges were identified: the perceived benefits of DTs are not clearly understood; DTs across the product life cycle or the DT life cycle are not sufficiently studied; it is not clear how DTs can contribute to reducing costs or supporting decision-making; technical implementation of DTs must be improved and better integrated in the context of the IoT; the level of fidelity of DTs is not entirely evaluated in terms of their parameters, accuracy, and level of abstraction; and the ownership of data stored within DTs should be better understood. Furthermore, from our research, it was not possible to find a paper discussing DTs only in regard to environmental sustainability.


2021 ◽  
Vol 13 (9) ◽  
pp. 4948
Author(s):  
Núria Boix Rodríguez ◽  
Giovanni Formentini ◽  
Claudio Favi ◽  
Marco Marconi

Face masks are currently considered key equipment to protect people against the COVID-19 pandemic. The demand for such devices is considerable, as is the amount of plastic waste generated after their use (approximately 1.6 million tons/day since the outbreak). Even if the sanitary emergency must have the maximum priority, environmental concerns require investigation to find possible mitigation solutions. The aim of this work is to develop an eco-design actions guide that supports the design of dedicated masks, in a manner to reduce the negative impacts of these devices on the environment during the pandemic period. Toward this aim, an environmental assessment based on life cycle assessment and circularity assessment (material circularity indicator) of different types of masks have been carried out on (i) a 3D-printed mask with changeable filters, (ii) a surgical mask, (iii) an FFP2 mask with valve, (iv) an FFP2 mask without valve, and (v) a washable mask. Results highlight how reusable masks (i.e., 3D-printed masks and washable masks) are the most sustainable from a life cycle perspective, drastically reducing the environmental impacts in all categories. The outcomes of the analysis provide a framework to derive a set of eco-design guidelines which have been used to design a new device that couples protection requirements against the virus and environmental sustainability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Li ◽  
Fengyin Xiong ◽  
Zhuo Chen

AbstractBiomass gasification, especially distribution to power generation, is considered as a promising way to tackle global energy and environmental challenges. However, previous researches on integrated analysis of the greenhouse gases (GHG) abatement potentials associated with biomass electrification are sparse and few have taken the freshwater utilization into account within a coherent framework, though both energy and water scarcity are lying in the central concerns in China’s environmental policy. This study employs a Life cycle assessment (LCA) model to analyse the actual performance combined with water footprint (WF) assessment methods. The inextricable trade-offs between three representative energy-producing technologies are explored based on three categories of non-food crops (maize, sorghum and hybrid pennisetum) cultivated in marginal arable land. WF results demonstrate that the Hybrid pennisetum system has the largest impact on the water resources whereas the other two technology options exhibit the characteristics of environmental sustainability. The large variances in contribution ratio between the four sub-processes in terms of total impacts are reflected by the LCA results. The Anaerobic Digestion process is found to be the main contributor whereas the Digestate management process is shown to be able to effectively mitigate the negative environmental impacts with an absolute share. Sensitivity analysis is implemented to detect the impacts of loss ratios variation, as silage mass and methane, on final results. The methane loss has the largest influence on the Hybrid pennisetum system, followed by the Maize system. Above all, the Sorghum system demonstrates the best performance amongst the considered assessment categories. Our study builds a pilot reference for further driving large-scale project of bioenergy production and conversion. The synergy of combined WF-LCA method allows us to conduct a comprehensive assessment and to provide insights into environmental and resource management.


2021 ◽  
Vol 13 (9) ◽  
pp. 4886
Author(s):  
Katia Perini ◽  
Fabio Magrassi ◽  
Andrea Giachetta ◽  
Luca Moreschi ◽  
Michela Gallo ◽  
...  

Urban greening provides a wide range of ecosystem services to address the main challenges of urban areas, e.g., carbon sequestration, evapotranspiration and shade, thermal insulation, and pollution control. This study evaluates the environmental sustainability of a vertical greening system (VGS) built in 2014 in Italy, for which extensive monitoring activities were implemented. The life-cycle assessment methodology was applied to quantify the water–energy–climate nexus of the VGS for 1 m2 of the building’s wall surface. Six different scenarios were modelled according to three different end-of-life scenarios and two different useful lifetime scenarios (10 and 25 years). The environmental impact of global-warming potential and generated energy consumption during the use phase in the VGS scenarios were reduced by 56% in relation to the baseline scenario (wall without VGS), and showed improved environmental performance throughout the complete life cycle. However, the water-scarcity index (WSI) of the VGS scenarios increased by 42%. This study confirms that the installation of VGSs offers a relevant environmental benefit in terms of greenhouse-gas emissions and energy consumption; however, increased water consumption in the use phase may limit the large-scale application of VGSs.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Lelia Murgia ◽  
Giuseppe Todde ◽  
Maria Caria ◽  
Antonio Pazzona

Dairy farming is constantly evolving towards more intensive levels of mechanization and automation which demand more energy consumption and result in higher economic and environmental costs. The usage of fossil energy in agricultural processes contributes to climate change both with on-farm emissions from the combustion of fuels, and by off-farm emissions due to the use of grid power. As a consequence, a more efficient use of fossil resources together with an increased use of renewable energies can play a key role for the development of more sustainable production systems. The aims of this study were to evaluate the energy requirements (fuels and electricity) in dairy farms, define the distribution of the energy demands among the different farm operations, identify the critical point of the process and estimate the amount of CO2 associated with the energy consumption. The inventory of the energy uses has been outlined by a partial Life Cycle Assessment (LCA) approach, setting the system boundaries at the farm level, from cradle to farm gate. All the flows of materials and energy associated to milk production process, including crops cultivation for fodder production, were investigated in 20 dairy commercial farms over a period of one year. Self-produced energy from renewable sources was also accounted as it influence the overall balance of emissions. Data analysis was focused on the calculation of energy and environmental sustainability indicators (EUI, CO2-eq) referred to the functional units. The production of 1 kg of Fat and Protein Corrected Milk (FPCM) required on average 0.044 kWhel and 0.251 kWhth, corresponding to a total emission of 0.085 kg CO2-eq). The farm activities that contribute most to the electricity requirements were milk cooling, milking and slurry management, while feeding management and crop cultivation were the greatest diesel fuel consuming operation and the largest in terms of environmental impact of milk production (73% of energy CO2-eq emissions). The results of the study can assist in the development of dairy farming models based on a more efficient and profitable use of the energy resources.


CERNE ◽  
2014 ◽  
Vol 20 (3) ◽  
pp. 409-418 ◽  
Author(s):  
Cassiano Moro Piekarski ◽  
Antonio Carlos de Francisco ◽  
Leila Mendes da Luz ◽  
Tiago Henrique de Paula Alvarenga ◽  
Juliana Vitoria Messias Bittencourt

The main goal of this study was to analyze the environmental profile of MDF panel manufacturing in the Brazilian industry in terms of energy, emissions and dependence on renewable sources. The study was conducted by using the methodology of Life Cycle Assessment (LCA), specifically through the development of the first Life Cycle Inventory (LCI) of MDF in a Brazilian industry. The life cycle inventory and the production processes analysis were constructed using Umberto® v.5.6 software and following the ISO 14040 series. The study covers the life cycle of MDF production from gate-to-gate perspective, involving the on-site manufacturing system. The functional unit was defined in 1 m³ of MDF. About 76% of energy required to produce MDF is thermal (52.8% of thermal energy is required for the drying process of wood fiber). CO2 is a major emission during the MDF production, where natural gas contributes to 96.7% of total CO2 fossils. It was observed a low dependence of non-renewable source (19.2%) compared with the literature.


Sign in / Sign up

Export Citation Format

Share Document