scholarly journals Extract of Cynomorium songaricum ameliorates mitochondrial ultrastructure impairments and dysfunction in two different in vitro models of Alzheimer’s disease

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dan Cheng ◽  
Lei Su ◽  
Xu Wang ◽  
Xinjie Li ◽  
Lingling Li ◽  
...  

Abstract Background Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, but there is still no effective way to stop or slow its progression. Our previous studies demonstrated that extract of Cynomorium songaricum (ECS), a Chinese herbal medicine, had neuroprotective effects in AD models in vivo. However, the pharmacological mechanism of ECS in AD is still unclear. Methods To study the mechanisms of action of the effects of ECS on AD, we used Aβ25–35- and H2O2-exposed HT22 cells to mimic specific stages of AD in vitro. The mitochondrial membrane potential (MMP), intracellular ATP, intracellular reactive oxygen species (ROS), and expression levels of mitochondrial dynamics-related proteins in each group were examined. Furthermore, we explored the mechanisms by which ECS reduces the phosphorylation of Drp1 at Ser637 and the changes in the concentrations of intracellular calcium ions in the two models after FK506 intervention. Results The results showed that ECS significantly enhanced the MMP (P < 0.05), increased intracellular ATP levels (P < 0.05) and decreased intracellular ROS levels in the Aβ- and H2O2-induced cell models (P < 0.05). Additionally, ECS regulated the expression levels of mitochondrial dynamics-related proteins by reducing the phosphorylation of Drp1 at Ser637 (P < 0.05) and decreasing the expression of Fis1 in the H2O2-induced models (P < 0.05). Further study indicated that ECS reduced the overload of intracellular calcium (P < 0.05). Conclusion Our study results suggest that ECS protects the mitochondrial ultrastructure, ameliorates mitochondrial dysfunction, and maintains mitochondrial dynamics in AD models.

2017 ◽  
Vol 43 (6) ◽  
pp. 2446-2456 ◽  
Author(s):  
Lu Zhang ◽  
Yu Fang ◽  
Xuan Cheng ◽  
Yajun Lian ◽  
Hongliang Xu ◽  
...  

Background: TRPML1 is reported to be involved in the pathogenesis of Alzheimer’s disease (AD) by regulating autophagy; however, the underlying mechanism is not completely clear. Methods: We developed an APP/PS1 transgenic animal model that presents with AD. TRPML1 was also overexpressed in these mice. Protein expression levels were determined by Western blot. Morris water maze (MWM) and recognition tasks were performed to characterize cognitive ability. TUNEL assays were analysed for the detection of neuronal apoptosis. Primary neurons were isolated and treated with the vehicle, Aβ1-42 or Aβ1-42 + mTOR activator, as well as infected with the recombinant adenovirus TRPML1 overexpression vector in vitro. Cell viability was measured by the MTS assay, and lysosomal Ca2+ was also measured. Results: In the APP/PS1 transgenic mice, TRPML1 was downregulated, the PPARγ/AMPK signalling pathway was activated, the mTOR/S6K signalling pathway was suppressed, and autophagic lysosome reformation (ALR)-related proteins were upregulated. TRPML1 overexpression or treatment with PPARγ and AMPK inhibitors or an mTOR activator reduced the expression levels of ALR-related proteins, rescued the memory and recognition impairments and attenuated neuronal apoptosis in mice with the APP/PS1 transgenes. In vitro experiments showed that TRPML1 overexpression or treatment with the mTOR activator propranolol attenuated the Aβ1-42-suppressed cell viability and the Aβ1-42-decreased lysosomal [Ca2+] ion concentration in primary neurons. TRPML1 overexpression or treatment with the mTOR activator propranolol also attenuated the Aβ1-42-inhibited mTOR/S6K signalling pathway and the Aβ1-42-induced ALR-related protein expression levels. Conclusion: TRPML1 is involved in the pathogenesis of AD by regulating autophagy at least in part through the PPARγ/AMPK/mTOR signallingpathway.


2020 ◽  
Vol 17 (7) ◽  
pp. 616-625
Author(s):  
Nattaporn Pakpian ◽  
Kamonrat Phopin ◽  
Kuntida Kitidee ◽  
Piyarat Govitrapong ◽  
Prapimpun Wongchitrat

Background: Mitochondrial dysfunction is a pathological feature that manifests early in the brains of patients with Alzheimer’s Disease (AD). The disruption of mitochondrial dynamics contributes to mitochondrial morphological and functional impairments. Our previous study demonstrated that the expression of genes involved in amyloid beta generation was altered in the peripheral blood of AD patients. Objective: The aim of this study was to further investigate the relative levels of mitochondrial genes involved in mitochondrial dynamics, including mitochondrial fission and fusion, and mitophagy in peripheral blood samples from patients with AD compared to healthy controls. Methods: The mRNA levels were analyzed by real-time polymerase chain reaction. Gene expression profiles were assessed in relation to cognitive performance. Results: Significant changes were observed in the mRNA expression levels of fission-related genes; Fission1 (FIS1) levels in AD subjects were significantly higher than those in healthy controls, whereas Dynamin- related protein 1 (DRP1) expression was significantly lower in AD subjects. The levels of the mitophagy-related genes, PTEN-induced kinase 1 (PINK1) and microtubule-associated protein 1 light chain 3 (LC3), were significantly increased in AD subjects and elderly controls compared to healthy young controls. The mRNA levels of Parkin (PARK2) were significantly decreased in AD. Correlations were found between the expression levels of FIS1, DRP1 and PARK2 and cognitive performance scores. Conclusion: Alterations in mitochondrial dynamics in the blood may reflect impairments in mitochondrial functions in the central and peripheral tissues of AD patients. Mitochondrial fission, together with mitophagy gene profiles, might be potential considerations for the future development of blood-based biomarkers for AD.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Sirui Guo ◽  
Jiahong Wang ◽  
Yunjia Wang ◽  
Ying Zhang ◽  
Kaishun Bi ◽  
...  

Kai-Xin-San (KXS), a classical Chinese traditional prescription, was widely applied in the treatment of Alzheimer’s disease (AD), while its functional mechanisms still remain unclear. By using systems biology approaches at animal, cellular, and molecular levels, the improvement of KXS on cognitive impairment was achieved by inhibiting abnormal acetylcholinesterase. The function on the nerve skeleton was performed by regulating the Tau phosphorylation pathway. Its antioxidant, anti-inflammatory, and antiapoptotic effects by modulating the aberrant upregulation of ROS, proinflammatory factors, and apoptosis-related proteins in the brain were studied to reveal the synergistic therapeutic efficacy of KXS. Then, formula dismantling in vitro indicated that ginseng was the principal herb, whereas three other herbs served adjuvant roles to achieve the best effect. After that, the in vivo analysis of components into plasma and brain of AD rats showed that 8 of 23 components in blood and 4 of 10 components in brain were from ginseng, respectively, further verifying the principal status of ginseng and the synergistic effects of the formula. Thus, the anti-AD effects of KXS were achieved by multitargets and multichannels. The systems biology approaches presented here provide a novel way in traditional herbal medicine research.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 881
Author(s):  
Tânia Fernandes ◽  
Rosa Resende ◽  
Diana F. Silva ◽  
Ana P. Marques ◽  
Armanda E. Santos ◽  
...  

Alzheimer’s disease (AD) is characterized by the accumulation of extracellular plaques composed by amyloid-β (Aβ) and intracellular neurofibrillary tangles of hyperphosphorylated tau. AD-related neurodegenerative mechanisms involve early changes of mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) and impairment of cellular events modulated by these subcellular domains. In this study, we characterized the structural and functional alterations at MAM, mitochondria, and ER/microsomes in a mouse neuroblastoma cell line (N2A) overexpressing the human amyloid precursor protein (APP) with the familial Swedish mutation (APPswe). Proteins levels were determined by Western blot, ER-mitochondria contacts were quantified by transmission electron microscopy, and Ca2+ homeostasis and mitochondria function were analyzed using fluorescent probes and Seahorse assays. In this in vitro AD model, we found APP accumulated in MAM and mitochondria, and altered levels of proteins implicated in ER-mitochondria tethering, Ca2+ signaling, mitochondrial dynamics, biogenesis and protein import, as well as in the stress response. Moreover, we observed a decreased number of close ER-mitochondria contacts, activation of the ER unfolded protein response, reduced Ca2+ transfer from ER to mitochondria, and impaired mitochondrial function. Together, these results demonstrate that several subcellular alterations occur in AD-like neuronal cells, which supports that the defective ER-mitochondria crosstalk is an important player in AD physiopathology.


2020 ◽  
Vol 18 (4) ◽  
pp. 354-359
Author(s):  
Shirin Tarbiat ◽  
Azize Simay Türütoğlu ◽  
Merve Ekingen

Alzheimer's disease is a neurodegenerative disorder characterized by memory loss and impairment of language. Alzheimer's disease is strongly associated with oxidative stress and impairment in the cholinergic pathway, which results in decreased levels of acetylcholine in certain areas of the brain. Hence, inhibition of acetylcholinesterase activity has been recognized as an acceptable treatment against Alzheimer's disease. Nature provides an array of bioactive compounds, which may protect against free radical damage and inhibit acetylcholinesterase activity. This study compares the in vitro antioxidant and anticholinesterase activities of hydroalcoholic extracts of five cultivars of Rosa Damascena Mill. petals (R. damascena 'Bulgarica', R. damascena 'Faik', R. damascena 'Iranica', R. damascena 'Complex-635' and R. damascena 'Complex-637') from Isparta, Turkey. The antioxidant activities of the hydroalcoholic extracts were tested for ferric ion reduction and DPPH radical scavenging activities. The anti-acetylcholinesterase activity was also evaluated. All rose cultivars showed a high potency for scavenging free radical and inhibiting acetylcholinesterase activity. There was a significant correlation between antioxidant and acetylcholinesterase inhibitory activity. Among cultivars, Complex-635 showed the highest inhibitory effect with an IC50 value of 3.92 µg/mL. Our results suggest that all these extracts may have the potential to treat Alzheimer's disease with Complex-635 showing more promise.


2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


2019 ◽  
Vol 20 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Chi Zhang ◽  
Zhichun Gu ◽  
Long Shen ◽  
Xianyan Liu ◽  
Houwen Lin

Background: To deliver drugs to treat Alzheimer’s Disease (AD), nanoparticles should firstly penetrate through blood brain barrier, and then target neurons. Methods: Recently, we developed an Apo A-I and NL4 dual modified nanoparticle (ANNP) to deliver beta-amyloid converting enzyme 1 (BACE1) siRNA. Although promising in vitro results were obtained, the in vivo performance was not clear. Therefore, in this study, we further evaluated the in vivo neuroprotective effect and toxicity of the ANNP/siRNA. The ANNP/siRNA was 80.6 nm with good stability when incubated with serum. In vivo, the treatment with ANNP/siRNA significantly improves the spatial learning and memory of APP/PS1 double transgenic mice, as determined by mean escape latency, times of crossing the platform area during the 60 s swimming and the percentage of the distance in the target quadrant. Results and Conclusion: After the treatment, BACE1 RNA level of ANNP/siRNA group was greatly reduced, which contributed a good AD treatment outcome. Finally, after repeated administration, the ANNP/siRNA did not lead to significant change as observed by HE staining of main organs, suggesting the good biocompatibility of ANNP/siRNA. These results demonstrated that the ANNP was a good candidate for AD targeting siRNA delivery.


2019 ◽  
Vol 19 (8) ◽  
pp. 688-705
Author(s):  
Taibi Ben Hadda ◽  
Abdur Rauf ◽  
Hsaine Zgou ◽  
Fatma Sezer Senol ◽  
Ilkay Erdogan Orhan ◽  
...  

Background:Since deficit of acetylcholine has been evidenced in the Alzheimer’s disease (AD) patients, cholinesterase inhibitors are currently the most specified drug category for the remediation of AD.Method:In the present study, 16 compounds (1-16) with dicarbonyl skeletons have been synthesized and tested for their inhibitory potential in vitro against AChE and BChE using ELISA microtiter plate assays at 100 μg/mL. Since metal accumulation is related to AD, the compounds were also tested for their metal-chelation capacity.Results and Conclusion:All the investigated dicarbonyl compounds exerted none or lower than 30% inhibition against both cholinesterases, whereas compounds 2, 8 and 11 showed 37, 42, 41% of inhibition towards BChE, being the most active. The highest metal-chelation capacity was observed with compound 8 (53.58 ± 2.06%). POM and DFT analyses are in good harmonization with experimental data.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


Sign in / Sign up

Export Citation Format

Share Document