scholarly journals Protective effects of Quercus acuta Thunb. fruit extract against UVB-induced photoaging through ERK/AP-1 signaling modulation in human keratinocytes

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Ji-Ae Hong ◽  
Donghyuk Bae ◽  
Kyo-Nyeo Oh ◽  
Dool-Ri Oh ◽  
Yujin Kim ◽  
...  

Abstract Background Quercus acuta Thunb. (Fagaceae) or Japanese evergreen oak is cultivated as an ornamental plant in South Korea, China, Japan, and Taiwan and used in traditional medicine. The acorn or fruit of Quercus acuta Thunb. (QAF) is the main ingredient of acorn jelly, a traditional food in Korea. Its leaf was recently shown to have potent xanthine oxidase inhibitory and anti-hyperuricemic activities; however, there have been no studies on the biological activity of QAF extracts. Solar ultraviolet light triggers photoaging of the skin, which increases the production of reactive oxygen species (ROS) and expression of matrix metalloproteinase (MMPs), and destroys collagen fibers, consequently inducing wrinkle formation. The aim of this study was to investigate the effect of water extracts of QAF against UVB-induced skin photoaging and to elucidate the underlying molecular mechanisms in human keratinocytes (HaCaT). Methods In this study, we used HPLC to identify the major active components of QAF water extracts. Anti-photoaging effects of QAF extracts were evaluated by analyzing ROS procollagen type I in UVB-irradiated HaCaT keratinocytes. Antiradical activity was determined using 2,2-diphenyl-1-picrylhydrazyl and 2,20-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) assays. The expression of MMP-1 was tested by western blotting and ELISA kits. QAF effects on phosphorylation of the MAPK (p38, JNK, and ERK) pathway and transcription factor AP-1, which enhances the expression of MMPs, were analyzed by western blots. Results We identified two major active components in QAF water extracts, gallotannic acid and ellagic acid. The QAF aqueous extracts recovered UVB-induced cell toxicity and reduced oxidative stress by inhibiting intracellular ROS generation in HaCaT cells. QAF rescued UVB-induced collagen degradation by suppressing MMP-1 expression. The anti-photoaging activities of QAF were associated with the inhibition of UVB-induced phosphorylation of extracellular signal-regulated kinase (ERK) and activator protein 1 (AP-1). Our findings indicated that QAF prevents UVB-induced skin damage due to collagen degradation and MMP-1 activation via inactivation of the ERK/AP-1 signaling pathway. Overall, this study strongly suggests that QAF exerts anti-skin-aging effects and is a potential natural biomaterial that inhibits UVB-induced photoaging. Conclusion These results show that QAF water extract effectively prevents skin photoaging by enhancing collagen deposition and inhibiting MMP-1 via the ERK/AP-1 signaling pathway.

Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1998 ◽  
Author(s):  
Dongjin Noh ◽  
Jin Choi ◽  
Eugene Huh ◽  
Myung Oh

Ultraviolet (UV) light, a major risk factor for external skin photoaging, induces oxidative stress in skin. UV causes a breakdown of skin homeostasis by impairing the extracellular matrix and inducing cell death. Tectorigenin, a constituent of leopard lily (Belamcanda chinensis L.) rhizome, has been reported to possess antioxidant, hair-darkening, and anti-inflammatory activities; however, the effect of tectorigenin on UV-B-induced skin damage is unknown. Here, we investigated the anti-skin-damage effects of tectorigenin against UV-B-stimulated oxidative stress in human keratinocytes. We irradiated HaCaT cells with UV-B (25 mJ/cm2), followed by treatment with tectorigenin for 24 h. We found that tectorigenin decreased the levels of intracellular reactive oxygen species by increasing the expression of anti-oxidative enzymes, such as glutathione and catalase. Furthermore, tectorigenin inhibited apoptosis by reducing caspase-3- and Bcl-2-associated protein-X levels, and increasing Bcl-2 protein levels. Tectorigenin also decreased matrix metalloproteinase-1 levels and increased type 1 collagen levels, thus preventing collagen degradation. These data demonstrate that tectorigenin exerts anti-skin-damage effects in human keratinocytes by attenuating UV-B-induced hyper-oxidation, apoptosis, and collagen degradation.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 300 ◽  
Author(s):  
Dong Ju Son ◽  
Jae Chul Jung ◽  
Yong Min Choi ◽  
Hyeon Yeol Ryu ◽  
Somin Lee ◽  
...  

The efficacy of wheat extract oil (WEO), standardized to glucosylceramides, for protecting against ultraviolet B (UVB)-induced damage of skin barrier function was assessed using the SHK-1 hairless mouse model and two human skin cell lines, namely, CCD-986sk and HeCaT. The ability of repeated oral administration of 30, 60, and 120 mg of WEO/kg/day for 12 weeks to prevent skin damage of SKH-1 hairless mice induced by UVB irradiation was evaluated. The results demonstrated that UVB-induced water evaporation (transepidermal water loss, TEWL) was significantly decreased by WEO. Similarly, UVB-induced losses in moisture and skin elasticity were improved by WEO supplementation. WEO attenuated the tissue procollagen type I, hyaluronic acid (HA), and ceramide reductions induced by UVB treatment as well. Collagen concentrations in skin tissue were increased in the WEO-treated mice, while UVB-induced epidermal thickening was reduced. In vitro studies using HeCaT human keratinocytes confirmed increased HA and collagen synthesis in response to WEO treatment. This may occur via WEO suppression of matrix metalloproteinase-1 (MMP-1), since its induction by UVB treatment was diminished in treated CCD-986sk cells. Oral administration of WEO improves skin barrier function in UVB-irradiated mice by attenuating damage typically observed in photoaging. This research further clarifies the clinical benefits previously observed by dietary WEO consumption.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 533 ◽  
Author(s):  
Hee-Soo Han ◽  
Ji-Sun Shin ◽  
Da-Bin Myung ◽  
Hye Ahn ◽  
Sun Lee ◽  
...  

Skin photoaging is mainly caused by exposure to ultraviolet (UV) light, which increases expressions of matrix metalloproteinases (MMPs) and destroys collagen fibers, consequently inducing wrinkle formation. Nutritional factors have received scientific attention for use as agents for normal skin functions. The aim of this study was to investigate the effect of hot water extracts from the leaves of Hydrangea serrata (Thunb.) Ser. (WHS) against ultraviolet B (UVB)-induced skin photoaging and to elucidate the underlying molecular mechanisms in human foreskin fibroblasts (Hs68) and HR-1 hairless mice. WHS recovered UVB-reduced cell viability and ameliorated oxidative stress by inhibiting intracellular reactive oxygen species (ROS) generation in Hs68 cells. WHS rescued UVB-induced collagen degradation by suppressing MMP expression, and reduced the mRNA levels of inflammatory cytokines. These anti-photoaging activities of WHS were associated with inhibition of the activator protein 1 (AP-1), signal transduction and activation of transcription 1 (STAT1), and mitogen-activated protein kinase (MAPK) signaling pathways. Oral administration of WHS effectively alleviated dorsal skin from wrinkle formation, epidermal thickening, collagen degradation, and skin dehydration in HR-1 hairless mice exposed to UVB. Notably, WHS suppressed UVB activation of the AP-1 and MAPK signaling pathways in dorsal mouse skin tissues. Taken together, our data indicate that WHS prevents UVB-induced skin damage due to collagen degradation and MMP activation via inactivation of MAPK/AP-1 signaling pathway.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 432 ◽  
Author(s):  
Eugenie Mussard ◽  
Sundy Jousselin ◽  
Annabelle Cesaro ◽  
Brigitte Legrain ◽  
Eric Lespessailles ◽  
...  

Andrographis paniculata (Burm.f.) has long been used in ayurvedic medicine through its anti-inflammatory properties. However, its protective effect of skin aging has not been studied in vitro. This study aimed to investigate the anti-aging effects of methanolic extract (ME), andrographolide (ANDRO), neoandrographolide (NEO), 14-deoxyandrographolide (14DAP) and 14-deoxy-11,12-didehydroandrographolide (14DAP11-12) on human dermal fibroblasts (HDFa) under pro-oxidant or pro-inflammatory condition. The in vitro anti-aging capacity of ME, ANDRO, NEO, 14DAP, and 14DAP11-12 (1, 2.5 and 5 µg/mL) was performed in HDFa. Oxidative stress and inflammation were induced by hydrogen peroxide and lipopolysaccharide/TNF-α, respectively. Reactive oxygen species (ROS) production was measured by the fluorescence of DCF-DA probe and cytokines were quantified by ELISA (IL6 and IL8) or RTqPCR (TNF-α). Procollagen type I production was determined by an ELISA. Our results showed a decrease in ROS production with ME and 14DAP at 5 µg/mL and 1 µg/mL, respectively. Furthermore, IL-6 production and TNF-α expression decreased under ANDRO and ME at 5 µg/mL. Our data indicated that ME and 14DAP protect from oxidative stress. Additionally, ME and ANDRO decreased an inflammation marker, IL-6. This suggests their potential natural treatment against skin damage. Hence, their applications could be of interest in cosmetics for preventing skin ageing.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Jung Hwan Oh ◽  
Jung Im Lee ◽  
Fatih Karadeniz ◽  
So Young Park ◽  
Youngwan Seo ◽  
...  

UVB exposure is one of the causes of several skin complications including but not limited to premature aging, wrinkle formation, and hyperpigmentation. UV-induced skin aging is called photoaging, and oxidative stress-induced overexpression of matrix metalloproteinases (MMPs) is the main reason behind the photoaging-mediated collagen degradation. Natural origin inhibitors of MMPs are regarded as a promising approach to prevent or treat photoaging. Therefore, the present study investigated the protective effects of 3,5-dicaffeoyl-epi-quinic acid (DCEQA) in human HaCaT keratinocytes against UVB irradiation-related dysregulation of MMPs. Changes in the mRNA and protein expression and release of MMP-1, -2, and -9 were observed after UVB irradiation with or without DCEQA treatment. In addition, the effect of DCEQA on the activation of p38, JNK, and ERK MAPKs was analyzed. Treatment of UVB-irradiated HaCaT cells with 10 μM DCEQA significantly suppressed the overexpression of both mRNA and protein of MMP-1, -2, and -9 while slightly increasing the diminished type I procollagen production. UVB-induced activation of MAPKs was also ameliorated by DCEQA treatment in a dose-dependent manner. Results indicated that DCEQA treatment was able to protect keratinocytes from UVB-induced photoaging by inhibiting the stimulated production of MMPs and the related decrease in collagen production. It was suggested that DCEQA downregulated the collagen degradation via inhibition of MAPK activation, which resulted in decreased MMP activity.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yun-mi Kang ◽  
Min-gyu Seo ◽  
Kyou-young Lee ◽  
Hyo-jin An

Yin-tonic herbal medicines have been shown to possess properties that make skin healthy by nourishing within various organs of the body. However, the antiphotoaging effect of these medicines on the skin has not been fully studied. Photoaging occurs with prolonged sun exposure and causes skin damage and aging, with depletion of the dermal extracellular matrix and chronic alterations in skin structure, such as wrinkles. In this study, we assessed the antiphotoaging effects of eight yin-tonic herbal medicines on human skin cells and skin equivalents. The levels of type I procollagen and matrix metalloproteinase-1 (MMP-1) in ultraviolet B- (UVB-) irradiated CCD-986sk fibroblasts were measured, and then three medicines were chosen based on screening results. Using UVB-irradiated human skin equivalents, we evaluated the effect of three yin-tonic herbal medicines on histological changes of skin, epidermal and dermal thickness, and MMP-1 production. Furthermore, we observed collagen fiber content and protein expression of filaggrin in UVB-irradiated human skin equivalents. Yin-tonic herbal medicines increased type I procollagen levels and decreased the production of MMP-1 in UVB-irradiated CCD-986sk fibroblasts. The three selected yin-tonic herbal medicines recovered the collagen content and filaggrin expression via MMP-1 downregulation in UVB-irradiated human skin equivalents. Our results show that yin-tonic herbal medicines can prevent skin photoaging by reduction of MMP-1 levels and increasing the expression of moisturizing factors. Based on these results, we suggest that yin-tonic herbal medicines have the potential to be used as helpful agent for skin photoaging.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3217
Author(s):  
Patrycja Ledwoń ◽  
Anna Maria Papini ◽  
Paolo Rovero ◽  
Rafal Latajka

Collagen fibres degradation is a complex process involving a variety of enzymes. Fibrillar collagens, namely type I, II, and III, are the most widely spread collagens in human body, e.g., they are responsible for tissue fibrillar structure and skin elasticity. Nevertheless, the hyperactivity of fibrotic process and collagen accumulation results with joints, bone, heart, lungs, kidneys or liver fibroses. Per contra, dysfunctional collagen turnover and its increased degradation leads to wound healing disruption, skin photoaging, and loss of firmness and elasticity. In this review we described the main enzymes participating in collagen degradation pathway, paying particular attention to enzymes degrading fibrillar collagen. Therefore, collagenases (MMP-1, -8, and -13), elastases, and cathepsins, together with their peptide and peptidomimetic inhibitors, are reviewed. This information, related to the design and synthesis of new inhibitors based on peptide structure, can be relevant for future research in the fields of chemistry, biology, medicine, and cosmeceuticals.


Author(s):  
Gen-Long Bai ◽  
Ping Wang ◽  
Xin Huang ◽  
Zi-Yue Wang ◽  
Di Cao ◽  
...  

Skin aging caused by UV radiation is called photoaging is characterized by skin roughness and dryness accompanied by a significant reduction of dermal collagen. Rapamycin is a macrolide immunosuppressant which has been shown to exhibit “anti-aging” effects in cells and organisms, however, its roles in the skin photoaging remains unclear. Here, we investigate the role of rapamycin and HSP27, which we have previously identified as an inhibitor of UV-induced apoptosis and senescence in HaCat cells, in a UVA-induced photoaging model of primary human dermal fibroblasts (HDFs). Results from senescence-associated beta-galactosidase (SA-β-gal) staining revealed that rapamycin significantly reduced senescence in UVA-treated HDFs. In addition, treatment with rapamycin significantly increased cell autophagy levels, decreased the expression of p53 and phosphorylated HSP27, and reduced genotoxic and oxidative cellular stress levels in UVA-induced HDFs. Knockdown of HSP27 resulted in a significant increase of MMP-1 and MMP-3 as well as a decrease in type I collagen expression. Rapamycin mitigated these effects by activation of the classical TGF-β/Smad signaling pathway and increasing the transcriptional activity of MAPK/AP-1. Taken together, these results suggest that rapamycin may potentially serve as a preventive and therapeutic agent for UVA-induced photoaging of the skin.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Chin-Feng Chan ◽  
Wen-Ying Huang ◽  
Hong-Yi Guo ◽  
Bo Rong Wang

Oxidative stress, including Ultraviolet (UV) irradiation-induced skin damage, is involved in numerous diseases. This study demonstrates that water extract ofEclipta prostrataL. (WEP) has a potent effect in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide radicals, and chelating ferrous ion, exhibiting IC50values of 0.23 mg/mL, 0.48 mg/mL, and 1.25 mg/mL, respectively. The WEP total phenol content was 176.45 mg gallic acid equivalents (GAE)/g sample. Chlorogenic acid, a component of the plant's active ingredients, was determined by HPLC and antioxidative assay. However, no caffeic acid, stigmasterol, or wedelolactone was present in WEP. WEP absorbs both UVA and UVB irradiation, and furthermore, the extract shows a dose-dependent response in the protection of HaCaT human keratinocytes and mouse fibroblasts 3T3 cells against UVB-induced cytotoxicity, which may result from a synergistic effect between chlorogenic acid and other active components present in WEP.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 387-387
Author(s):  
Barbara Davis ◽  
Dong Ju Son ◽  
Jae Chul Jung ◽  
Yong Min Choi ◽  
Hyeon Yeol Ryu ◽  
...  

Abstract Objectives The efficacy of wheat extract oil (WEO), standardized to glucosylceramides, for protecting against ultraviolet B (UVB)-induced damage of skin barrier function was assessed using the SHK-1 hairless mouse model and two human skin cell lines, namely, CCD-986sk and HeCaT. Methods The ability for repeated oral administration of 30, 60, and 120 mg of WEO/kg/day for 12 weeks to prevent skin damage of SKH-1 hairless mice induced by UVB irradiation was evaluated. To complement this work, and better understand the mechanism(s) through which this dietary ingredient works, changes in procollagen, hyaluronic acid (HA) and matrix metalloproteinase-1 (MMP-1) levels were assessed in response to UVB treatment in the presence and absence of WEO. Results The results demonstrated that UVB-induced water evaporation (transepidermal water loss, TEWL) was significantly decreased by WEO. Similarly, UVB-induced losses in moisture and skin elasticity were improved by WEO supplementation. WEO attenuated the tissue procollagen type I, HA, and ceramide reductions induced by UVB treatment as well. Collagen concentrations in skin tissue were increased in the WEO-treated mice, while UVB-induced epidermal thickening was reduced. In vitro studies using HeCaT human keratinocytes confirmed increased HA and collagen synthesis in response to WEO treatment. This may occur via WEO suppression of MMP-1, since its induction by UVB treatment was diminished in treated CCD-986sk cells. Conclusions Oral administration of WEO improves skin barrier function in UVB-irradiated mice by attenuating damage typically observed in photoaging. This research further clarifies the clinical benefits previously observed by dietary WEO consumption. Funding Sources Funding for this research was provided by the Life Science Research Institute, Novarex Co., Ltd.


Sign in / Sign up

Export Citation Format

Share Document