scholarly journals Characterizing circulating nucleosomes in the plasma of dogs with lymphoma

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Christopher Dolan ◽  
Tasha Miller ◽  
Jarvis Jill ◽  
Jason Terrell ◽  
Theresa Kathleen Kelly ◽  
...  

Abstract Background Nucleosomes consist of DNA wrapped around a histone octamer core like beads on a string so that DNA can be condensed as chromatin into chromosomes. Diseases such as cancer or inflammation lead to cell death where chromatin is fragmentated and released as mononucleosomes into the blood. The Nu.Q™ H3.1 assay measures total nucleosome concentration in plasma of humans and has been used to detect and identify cancer even at early stages. The objectives of this study were to determine if nucleosome levels could be used to distinguish between healthy dogs and dogs with various stages of lymphoma (LSA) using the Nu.Q™ H3.1 assay. A total of 126 dogs diagnosed with LSA and 134 healthy controls were recruited for this study. Plasma was collected from each dog and stored in K2-EDTA tubes. The LSA patient samples were recruited from TAMU or purchased from various biobanks. All control cases were recruited from TAMU. Results Dogs with LSA had an approximately 7-fold increase in their plasma nucleosome concentrations compared to controls (AUC 87.8%). Nucleosome concentrations increased with cancer stage and dogs with B cell lymphomas had significantly higher nucleosome concentrations than dogs with T cell lymphomas. Conclusions The Nu.Q™ H3.1 assay was able to reliably detect elevated nucleosome concentrations in the plasma of dogs with LSA. Furthermore, it appears that nucleosomes are useful for differentiating cancer from healthy individuals in canines.

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Heather Wilson-Robles ◽  
Tasha Miller ◽  
Jill Jarvis ◽  
Jason Terrell ◽  
Theresa Kathleen Kelly ◽  
...  

Abstract Background Nucleosomes consist of DNA wrapped around a histone octamer core like thread on a spool to condense DNA as chromatin into chromosomes. Diseases such as cancer or inflammation lead to cell death, chromatin fragmentation and release of nucleosomes into the blood. The Nu.Q™ platform measures circulating nucleosomes in the blood of humans that result from disease and has been used to detect and identify cancer even at early stages. The objectives of this study are to quantify and better characterize nucleosomes in dogs with various stages of hemangiosarcoma (HSA) using this ELISA-based assay. Samples from 77 dogs with a confirmed diagnosis of hemangiosarcoma and 134 healthy controls were utilized for this study. The HSA samples were recruited from the Texas A&M University Small Animal Clinic (TAMU-SAC) or purchased from biobanks. All control samples were recruited from the TAMU-SAC. Results Dogs with hemangiosarcoma had a 6.6-fold increase in their median plasma nucleosome concentrations compared to controls (AUC 92.9 %). Elevated nucleosome concentrations were seen at all stages of disease and nucleosome concentrations increased with the stage of the disease. Conclusions Plasma nucleosome concentrations are a reliable way to differentiate dogs with hemangiosarcoma from healthy dogs. Further testing is underway to better characterize cancer associated HSA circulating nucleosomes and optimize future diagnostics for canine HSA detection.


2021 ◽  
Author(s):  
Heather Wilson-Robles ◽  
Jason Terrell ◽  
Theresa Kathleen Kelly ◽  
Tasha Miller ◽  
Bygott Thomas ◽  
...  

Abstract Background: Nucleosomes consist of DNA wrapped around a histone octamer core like thread on a spool to condense DNA as chromatin into chromosomes. Diseases such as cancer or inflammation lead to cell death, chromatin fragmentation and release of nucleosomes into the blood. The Nu.QTM platform measures circulating nucleosomes in the blood of humans that result from disease and has been used to detect and identify cancer even at early stages. The objectives of this study are to quantify and better characterize nucleosomes in dogs with various stages of hemangiosarcoma (HSA) using this ELISA-based assay. Samples from 77 dogs with a confirmed diagnosis of hemangiosarcoma and 134 healthy controls were utilized for this study. The HSA samples were recruited from the Texas A&M University Small Animal Clinic (TAMU-SAC) or purchased from biobanks. All control samples were recruited from the TAMU-SAC. Results: Dogs with hemangiosarcoma had a 6.6-fold increase in their median plasma nucleosome concentrations compared to controls (AUC 92.9%). Elevated nucleosome concentrations were seen at all stages of disease and nucleosome concentrations increased with the stage of the disease. Conclusion: Plasma nucleosome concentrations are a reliable way to differentiate dogs with hemangiosarcoma from healthy dogs. Further testing is underway to better characterize cancer associated HSA circulating nucleosomes and optimize future diagnostics for canine HSA detection.


2021 ◽  
Author(s):  
Christopher Dolan ◽  
Tasha Miller ◽  
Jarvis Jill ◽  
Jason Terrell ◽  
Theresa Kelly ◽  
...  

Abstract Background: Nucleosomes consist of DNA wrapped around a histone octamer core like beads on a string so that DNA can be condensed as chromatin into chromosomes. Diseases such as cancer or inflammation lead to cell death where chromatin is fragmentated and released as mononucleosomes into the blood. The Nu.QTM H3.1 assay measures total nucleosome concentration in plasma of humans and has been used to detect and identify cancer even at early stages. The objectives of this study were to determine if nucleosome levels could be used to distinguish between healthy dogs and dogs with various stages of lymphoma (LSA) using the Nu.Q™ H3.1 assay. A total of 126 dogs diagnosed with LSA and 134 healthy controls were recruited for this study. Plasma was collected from each dog and stored in K2-EDTA tubes. The LSA patient samples were recruited from TAMU or purchased from various biobanks. All control cases were recruited from TAMU. Samples were also collected longitudinally from 3 dogs undergoing treatment for multicentric lymphoma at TAMU as a pilot study to investigate the pattern of nucleosome concentrations in plasma during treatment. Results: Dogs with LSA had an approximately 7-fold increase in their plasma nucleosome concentrations compared to controls (AUC 87.8%). Nucleosome concentrations increased with cancer stage and dogs with B cell lymphomas had significantly higher nucleosome concentrations than dogs with T cell lymphomas. Nucleosome concentrations from serially monitored patients were elevated at diagnosis and progression with subsequent decreases in nucleosome concentration that corresponded to clinically detectable responses to therapy. Conclusions: The Nu.QTM H3.1 assay was able to reliably detect elevated nucleosome concentrations in the plasma of dogs with LSA. Furthermore, it appears that nucleosomes are useful for differentiating cancer from healthy individuals in canines. Results from serially monitored patients indicate that nucleosomes could be an objective monitoring tool for remission status in canine lymphoma patients.


2021 ◽  
pp. 135245852110033
Author(s):  
Quentin Howlett-Prieto ◽  
Xuan Feng ◽  
John F Kramer ◽  
Kevin J Kramer ◽  
Timothy W Houston ◽  
...  

Objective: To determine the effect of long-term anti-CD20 B-cell-depleting treatment on regulatory T cell immune subsets that are subnormal in untreated MS patients. Methods: 30 clinically stable MS patients, before and over 38 months of ocrelizumab treatment, were compared to 13 healthy controls, 29 therapy-naïve MS, 9 interferon-β-treated MS, 3 rituximab-treated MS, and 3 rituximab-treated patients with other autoimmune inflammatory diseases. CD8, CD28, CD4, and FOXP3 expression in peripheral blood mononuclear cells was quantitated with flow cytometry. Results: CD8+ CD28− regulatory cells rose from one-third of healthy control levels before ocrelizumab treatment (2.68% vs 7.98%), normalized by 12 months (13.5%), and rose to 2.4-fold above healthy controls after 18 months of ocrelizumab therapy (19.0%). CD4+ FOXP3+ regulatory cells were lower in MS than in healthy controls (7.98%) and showed slight long-term decreases with ocrelizumab. CD8+ CD28− and CD4+ FOXP3+ regulatory T cell percentages in IFN-β-treated MS patients were between those of untreated MS and healthy controls. Interpretation: Long-term treatment with ocrelizumab markedly enriches CD8+ CD28− regulatory T cells and corrects the low levels seen in MS before treatment, while slightly decreasing CD4+ FOXP3+ regulatory T cells. Homeostatic enrichment of regulatory CD8 T cells provides a mechanism, in addition to B cell depletion, for the benefits of anti-CD20 treatment in MS.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 340
Author(s):  
Ming Liang Oon ◽  
Jing Quan Lim ◽  
Bernett Lee ◽  
Sai Mun Leong ◽  
Gwyneth Shook-Ting Soon ◽  
...  

T-cell lymphomas arise from a single neoplastic clone and exhibit identical patterns of deletions in T-cell receptor (TCR) genes. Whole genome sequencing (WGS) data represent a treasure trove of information for the development of novel clinical applications. However, the use of WGS to identify clonal T-cell proliferations has not been systematically studied. In this study, based on WGS data, we identified monoclonal rearrangements (MRs) of T-cell receptors (TCR) genes using a novel segmentation algorithm and copy number computation. We evaluated the feasibility of this technique as a marker of T-cell clonality using T-cell lymphomas (TCL, n = 44) and extranodal NK/T-cell lymphomas (ENKTLs, n = 20), and identified 98% of TCLs with one or more TCR gene MRs, against 91% detected using PCR. TCR MRs were absent in all ENKTLs and NK cell lines. Sensitivity-wise, this platform is sufficiently competent, with MRs detected in the majority of samples with tumor content under 25% and it can also distinguish monoallelic from biallelic MRs. Understanding the copy number landscape of TCR using WGS data may engender new diagnostic applications in hematolymphoid pathology, which can be readily adapted to the analysis of B-cell receptor loci for B-cell clonality determination.


Immunology ◽  
2003 ◽  
Vol 109 (4) ◽  
pp. 504-509
Author(s):  
Jesus Merino ◽  
Miguel A. Diez ◽  
Maria Muniz ◽  
Luis Buelta ◽  
Gabriel Nunez ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 179.2-179
Author(s):  
G. Robinson ◽  
J. Peng ◽  
P. Dönnes ◽  
L. Coelewij ◽  
M. Naja ◽  
...  

Background:Juvenile-onset systemic lupus erythematosus (JSLE) is a complex and heterogeneous disease characterised by diagnosis and treatment delays. An unmet need exists to better characterise the immunological profile of JSLE patients and investigate its links with the disease trajectory over time.Objectives:A machine learning (ML) approach was applied to explore new diagnostic signatures for JSLE based on immune-phenotyping data and stratify patients by specific immune characteristics to investigate longitudinal clinical outcome.Methods:Immune-phenotyping of 28 T-cell, B-cell and myeloid-cell subsets in 67 age and sex-matched JSLE patients and 39 healthy controls (HCs) was performed by flow cytometry. A balanced random forest (BRF) ML predictive model was developed (10,000 decision trees). 10-fold cross validation, Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) and logistic regression was used to validate the model. Longitudinal clinical data were related to the immunological features identified by ML analysis.Results:The BRF-model discriminated JSLE patients from healthy controls with 91% prediction accuracy suggesting that JSLE patients could be distinguished from HCs with high confidence using immunological parameters. The top-ranked immunological features from the BRF-model were confirmed using sPLS-DA and logistic regression and included CD19+ unswitched memory B-cells, naïve B-cells, CD14+monocytes and total CD4+, CD8+and memory T-cell subsets.K-mean clustering was applied to stratify patients using the validated signature. Four groups were identified, each with a distinct immune and clinical profile. Notably, CD8+T-cell subsets were important in driving patient stratification while B-cell markers were similarly expressed across the JSLE cohort. JSLE patients with elevated effector memory CD8+T-cell frequencies had more persistently active disease over time, and this was associated with increased treatment burden and prevalence of lupus nephritis. Finally, network analysis identified specific clinical features associated with each of the top JSLE immune-signature variables.Conclusion:Using a combined ML approach, a distinct immune signature was identified that discriminated between JSLE patients and HCs and further stratified patients. This signature could have diagnostic and therapeutic implications. Further immunological association studies are warranted to develop data-driven personalised medicine approaches for JSLE.Acknowledgments:Lupus UK, Rosetrees Trust, Versus ArthritisDisclosure of Interests:George Robinson: None declared, Junjie Peng: None declared, Pierre Dönnes: None declared, Leda Coelewij: None declared, Meena Naja: None declared, Anna Radziszewska: None declared, Chris Wincup: None declared, Hannah Peckham: None declared, David Isenberg Consultant of: Study Investigator and Consultant to Genentech, Yiannis Ioannou: None declared, Ines Pineda Torra: None declared, Coziana Ciurtin Grant/research support from: Pfizer, Consultant of: Roche, Modern Biosciences, Elizabeth Jury: None declared


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 28-29
Author(s):  
Jie Wang ◽  
Katarzyna Urbanska ◽  
Prannda Sharma ◽  
Mathilde Poussin ◽  
Reza Nejati ◽  
...  

Background: Peripheral T-cell lymphomas (PTCL) encompass a highly heterogeneous group of T-cell malignancies and are generally associated with a poor prognosis. Combination chemotherapy results in consistently poorer outcomes for T-cell lymphomas compared with B-cell lymphomas.1 There is an urgent clinical need to develop novel approaches to treatment of PTCL. While CD19- and CD20-directed immunotherapies have been successful in the treatment of B-cell malignancies, T-cell malignancies lack suitable immunotherapeutic targets. Brentuximab Vedotin, a CD30 antibody-drug conjugate, is not applicable to PTCL subtypes which do not express CD30.2 Broadly targeting pan-T cell markers is predicted to result in extensive T-cell depletion and clinically significant immune deficiency; therefore, a more tumor-specific antigen that primarily targets the malignant T-cell clone is needed. We reasoned that since malignant T cells are clonal and express the same T-cell receptor (TCR) in a given patient, and since the TCR β chain in human α/β TCRs can be grouped into 24 functional Vβ families targetable by monoclonal antibodies, immunotherapeutic targeting of TCR Vβ families would be an attractive strategy for the treatment of T-cell malignancies. Methods: We developed a flexible approach for targeting TCR Vβ families by engineering T cells to express a CD64 chimeric immune receptor (CD64-CIR), comprising a CD3ζ T cell signaling endodomain, CD28 costimulatory domain, and the high-affinity Fc gamma receptor I, CD64. T cells expressing CD64-CIR are predicted to be directed to tumor cells by Vβ-specific monoclonal antibodies that target tumor cell TCR, leading to T cell activation and induction of tumor cell death by T cell-mediated cytotoxicity. Results: This concept was first evaluated in vitro using cell lines. SupT1 T-cell lymphoblasts, which do not express a native functioning TCR, were stably transduced to express a Vβ12+ MART-1 specific TCR, resulting in a Vβ12 TCR expressing target T cell line.3 Vβ family specific cytolysis was confirmed by chromium release assays using co-culture of CD64 CIR transduced T cells with the engineered SupT1-Vβ12 cell line in the presence of Vβ12 monoclonal antibody. Percent specific lysis was calculated as (experimental - spontaneous lysis / maximal - spontaneous lysis) x 100. Controls using no antibody, Vβ8 antibody, and untransduced T cells did not show significant cytolysis (figure A). Next, the Jurkat T cell leukemic cell line, which expresses a native Vβ8 TCR, was used as targets in co-culture. Again, Vβ family target specific cytolysis was achieved in the presence of CD64 CIR T cells and Vβ8, but not Vβ12 control antibody. Having demonstrated Vβ family specific cytolysis in vitro using target T cell lines, we next evaluated TCR Vβ family targeting in vivo. Immunodeficient mice were injected with SupT1-Vβ12 or Jurkat T cells with the appropriate targeting Vβ antibody, and either CD64 CIR T cells or control untransduced T cells. The cell lines were transfected with firefly luciferase and tumor growth was measured by bioluminescence. The CD64 CIR T cells, but not untransduced T cells, in conjunction with the appropriate Vβ antibody, successfully controlled tumor growth (figure B). Our results provide proof-of-concept that TCR Vβ family specific T cell-mediated cytolysis is feasible, and informs the development of novel immunotherapies that target TCR Vβ families in T-cell malignancies. Unlike approaches that target pan-T cell antigens, this approach is not expected to cause substantial immune deficiency and could lead to a significant advance in the treatment of T-cell malignancies including PTCL. References 1. Coiffier B, Brousse N, Peuchmaur M, et al. Peripheral T-cell lymphomas have a worse prognosis than B-cell lymphomas: a prospective study of 361 immunophenotyped patients treated with the LNH-84 regimen. The GELA (Groupe d'Etude des Lymphomes Agressives). Ann Oncol Off J Eur Soc Med Oncol. 1990;1(1):45-50. 2. Horwitz SM, Advani RH, Bartlett NL, et al. Objective responses in relapsed T-cell lymphomas with single agent brentuximab vedotin. Blood. 2014;123(20):3095-3100. 3. Hughes MS, Yu YYL, Dudley ME, et al. Transfer of a TCR Gene Derived from a Patient with a Marked Antitumor Response Conveys Highly Active T-Cell Effector Functions. Hum Gene Ther. 2005;16(4):457-472. Figure Disclosures Schuster: Novartis, Genentech, Inc./ F. Hoffmann-La Roche: Research Funding; AlloGene, AstraZeneca, BeiGene, Genentech, Inc./ F. Hoffmann-La Roche, Juno/Celgene, Loxo Oncology, Nordic Nanovector, Novartis, Tessa Therapeutics: Consultancy, Honoraria.


Blood ◽  
1997 ◽  
Vol 90 (10) ◽  
pp. 4116-4125 ◽  
Author(s):  
Janet J. Bijl ◽  
Johan W. van Oostveen ◽  
Jan M.M. Walboomers ◽  
Anja Horstman ◽  
Adriaan J.C. van den Brule ◽  
...  

Abstract Most of the 39 members of the homeobox (HOX) gene family are believed to control blood cell development. HOXC4 and HOXC6 gene expression levels increase with differentiation of lymphoid cells. In contrast, HOXC5 is not expressed in the lymphoid lineage, but was found in lymphoid cell lines, representing the neoplastic equivalents of various differentiation stages of T and B lymphocytes. In the present study, we investigated the HOXC4, HOXC5, and HOXC6 gene expression pattern in 89 non-Hodgkin's lymphomas (NHLs) of different histologic subtypes and originating from different sites. Using RNA in situ hybridization and semiquantitative reverse transcription-polymerase chain reaction, we found expression of HOXC4 in 83 of 88 and HOXC6 in 77 of 88 NHLs and leukemias investigated. In contrast, HOXC5 expression was found in only 26 of 87 NHLs and appeared to be preferentially expressed by two specific subsets of lymphomas, ie, primary cutaneous anaplastic T-cell lymphomas (9 of 9) and extranodal marginal zone B-cell lymphomas (maltomas; 7 of 9). These results indicate that, in contrast to HOXC4 and HOXC6, HOXC5 shows a type- and site-restricted expression pattern in both T- and B-cell NHLs.


2019 ◽  
Vol 76 (22) ◽  
pp. 1825-1834
Author(s):  
Clement Chung

Abstract Purpose This article summarizes current targeted therapies that have received regulatory approval for the treatment of B- and T-cell lymphomas. Summary Over the last 20 years, new drug therapies for lymphomas of B cells and T cells have expanded considerably. Targeted therapies for B-cell lymphomas include: (1) monoclonal antibodies directed at the CD20 lymphocyte antigen, examples of which are rituximab, ofatumumab, and obinutuzumab; (2) gene transfer therapy, an example of which is chimeric antigen receptor–modified T-cell (CAR-T) therapy directed at the CD19 antigen expressed on the cell surface of both immature and mature B cells; and (3) small-molecule inhibitors (ibrutinib, acalabrutinib, copanlisib, duvelisib, and idelalisib) that target the B-cell receptor signaling pathway. Of note, brentuximab vedotin is an antibody–drug conjugate that targets CD30, another lymphocyte antigen expressed on the cell surface of both Hodgkin lymphoma (a variant of B-cell lymphoma) and some T-cell lymphomas. Although aberrant epigenetic signaling pathways are present in both B- and T-cell lymphomas, epigenetic inhibitors (examples include belinostat, vorinostat, and romidepsin) are currently approved by the Food and Drug Administration for T-cell lymphomas only. In addition, therapies that target the tumor microenvironment have been developed. Examples include mogamulizumab, bortezomib, lenalidomide, nivolumab, and pembrolizumab. In summary, the efficacy of these agents has led to the development of supportive care to mitigate adverse effects, due to the presence of on- or off-target toxicities. Conclusion The therapeutic landscape of lymphomas has continued to evolve. In turn, the efficacy of these agents has led to the development of supportive care to mitigate adverse effects, due to the presence of on- or off-target toxicities. Further opportunities are warranted to identify patients who are most likely to achieve durable response and reduce the risk of disease progression. Ongoing trials with current and investigational agents may further elucidate their place in therapy and therapeutic benefits.


Sign in / Sign up

Export Citation Format

Share Document