scholarly journals Loss of IL-33 enhances elastase-induced and cigarette smoke extract-induced emphysema in mice

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Daisuke Morichika ◽  
Akihiko Taniguchi ◽  
Naohiro Oda ◽  
Utako Fujii ◽  
Satoru Senoo ◽  
...  

Abstract Background IL-33, which is known to induce type 2 immune responses via group 2 innate lymphoid cells, has been reported to contribute to neutrophilic airway inflammation in chronic obstructive pulmonary disease. However, its role in the pathogenesis of emphysema remains unclear. Methods We determined the role of interleukin (IL)-33 in the development of emphysema using porcine pancreas elastase (PPE) and cigarette smoke extract (CSE) in mice. First, IL-33−/− mice and wild-type (WT) mice were given PPE intratracheally. The numbers of inflammatory cells, and the levels of cytokines and chemokines in the bronchoalveolar lavage (BAL) fluid and lung homogenates, were analyzed; quantitative morphometry of lung sections was also performed. Second, mice received CSE by intratracheal instillation. Quantitative morphometry of lung sections was then performed again. Results Intratracheal instillation of PPE induced emphysematous changes and increased IL-33 levels in the lungs. Compared to WT mice, IL-33−/− mice showed significantly greater PPE-induced emphysematous changes. No differences were observed between IL-33−/− and WT mice in the numbers of macrophages or neutrophils in BAL fluid. The levels of hepatocyte growth factor were lower in the BAL fluid of PPE-treated IL-33−/− mice than WT mice. IL-33−/− mice also showed significantly greater emphysematous changes in the lungs, compared to WT mice, following intratracheal instillation of CSE. Conclusion These observations suggest that loss of IL-33 promotes the development of emphysema and may be potentially harmful to patients with COPD.

2020 ◽  
Author(s):  
Daisuke Morichika ◽  
Akihiko Taniguchi ◽  
Naohiro Oda ◽  
Utako Fujii Utako Fujii ◽  
Satoru Senoo ◽  
...  

Abstract Background: IL-33, which is known to induce type 2 immune responses via group 2 innate lymphoid cells, has been reported to contribute to neutrophilic airway inflammation in chronic obstructive pulmonary disease. However, its role in the pathogenesis of emphysema remains unclear. Methods: We determined the role of interleukin (IL)-33 in the development of emphysema using porcine pancreas elastase (PPE) and cigarette smoke extract (CSE) in mice. First, IL-33−/− mice and wild-type (WT) mice were given PPE intratracheally. The numbers of inflammatory cells, and the levels of cytokines and chemokines in the bronchoalveolar lavage (BAL) fluid and lung homogenates, were analyzed; quantitative morphometry of lung sections was also performed. Second, mice received CSE by intratracheal instillation. Quantitative morphometry of lung sections was then performed again. Results: Intratracheal instillation of PPE induced emphysematous changes and increased IL-33 levels in the lungs. Compared to WT mice, IL-33−/− mice showed significantly greater PPE-induced emphysematous changes. No differences were observed between IL-33−/− and WT mice in the numbers of macrophages or neutrophils in BAL fluid. The levels of hepatocyte growth factor were lower in the BAL fluid of PPE-treated IL-33−/− mice than WT mice. IL-33−/− mice also showed significantly greater emphysematous changes in the lungs, compared to WT mice, following intratracheal instillation of CSE. Conclusion: These observations suggest that loss of IL-33 promotes the development of emphysema and may be potentially harmful to patients with COPD.


2021 ◽  
Author(s):  
Simone Morris ◽  
Kathryn Wright ◽  
Vamshikrishna Malyla ◽  
Warwick J Britton ◽  
Philip M Hansbro ◽  
...  

AbstractCigarette smoke (CS)-induced inflammation leads to a range of diseases including chronic obstructive pulmonary disease and cancer. Environmental factors including gut microbiota make up are major modifying factors that determine the severity of cigarette smoke-induced pathology. Adult zebrafish display increased inflammatory cytokine transcription when exposed to cigarette smoke extract (CSE) but incongruously do not produce a mucosal leukocytic inflammation phenotype. Zebrafish embryos and larvae have been used to model the effects of cigarette smoking on a range of physiological processes and offer an amenable platform for screening modifiers of cigarette smoke-induced pathologies. Here we exposed zebrafish larvae to CSE and showed that it was toxic and we characterised a CSE-induced leukocytic inflammatory phenotype with increased neutrophilic and macrophage responses. The CSE-induced phenotype was exacerbated by co-exposure to microbiota from the faeces of CS-exposed mice, but not control mice. Microbiota could be recovered from the gut of zebrafish and studied in isolation. This demonstrates the utility of the zebrafish-CSE exposure platform for identifying environmental modifiers of cigarette smoking-associated pathology and demonstrates that the CS-exposed mouse gut microbiota potentiates the inflammatory effects of CSE across host species.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jifeng Liu ◽  
Xiaoning Zhong ◽  
Zhiyi He ◽  
Jianquan Zhang ◽  
Jing Bai ◽  
...  

Cigarette smoke is a major effector of chronic obstructive pulmonary disease (COPD), and Th17 cells and dendritic cells (DCs) involve in the pathogenesis of COPD. Previous studies have demonstrated the anti-inflammatory effects of macrolides. However, the effects of macrolides on the cigarette smoke extract- (CSE-) induced immune response are unclear. Accordingly, in this study, we evaluated the effects of erythromycin (EM) on CSE-exposed DCs polarizing naïve CD4+ T cells into Th17 cells. DCs were generated from bone marrow-derived mononuclear cells isolated from male BALB/c mice and divided into five groups: control DC group, CSE-exposed DC group, CD40-antibody-blocked CSE-exposed DC group, and EM-treated CSE-exposed DC group. The function of polarizing CD4+ T cells into Th17 cells induced by all four groups of DCs was assayed based on the mixed lymphocyte reaction (MLR) of naïve CD4+ T cells. CD40 expression in DCs in the CSE-exposed group increased significantly compared with that in the control group (P<0.05). The Th17 cells in the CSE-exposed DC/MLR group increased significantly compared with those in the control DC/MLR group (P<0.05). Moreover, Th17 cells in the CD40-blocked CSE-exposed DC/MLR group and EM-treated CSE-exposed DC/MLR group were reduced compared with those in the CSE-exposed DC/MLR group (P<0.05). Thus, these findings suggested that EM suppressed the CSE-exposed DC-mediated polarization of CD4+ T cells into Th17 cells and that this effect may be mediated through inhibition of the CD40/CD40L pathway.


2015 ◽  
Vol 308 (1) ◽  
pp. L96-L103 ◽  
Author(s):  
Loes E. M. Kistemaker ◽  
Ronald P. van Os ◽  
Albertina Dethmers-Ausema ◽  
I. Sophie T. Bos ◽  
Machteld N. Hylkema ◽  
...  

Anticholinergics, blocking the muscarinic M3 receptor, are effective bronchodilators for patients with chronic obstructive pulmonary disease. Recent evidence from M3 receptor-deficient mice (M3R−/−) indicates that M3 receptors also regulate neutrophilic inflammation in response to cigarette smoke (CS). M3 receptors are present on almost all cell types, and in this study we investigated the relative contribution of M3 receptors on structural cells vs. inflammatory cells to CS-induced inflammation using bone marrow chimeric mice. Bone marrow chimeras (C56Bl/6 mice) were generated, and engraftment was confirmed after 10 wk. Thereafter, irradiated and nonirradiated control animals were exposed to CS or fresh air for four consecutive days. CS induced a significant increase in neutrophil numbers in nonirradiated and irradiated control animals (4- to 35-fold). Interestingly, wild-type animals receiving M3R−/− bone marrow showed a similar increase in neutrophil number (15-fold). In contrast, no increase in the number of neutrophils was observed in M3R−/− animals receiving wild-type bone marrow. The increase in keratinocyte-derived chemokine (KC) levels was similar in all smoke-exposed groups (2.5- to 5.0-fold). Microarray analysis revealed that fibrinogen-α and CD177, both involved in neutrophil migration, were downregulated in CS-exposed M3R−/− animals receiving wild-type bone marrow compared with CS-exposed wild-type animals, which was confirmed by RT-qPCR (1.6–2.5 fold). These findings indicate that the M3 receptor on structural cells plays a proinflammatory role in CS-induced neutrophilic inflammation, whereas the M3 receptor on inflammatory cells does not. This effect is probably not mediated via KC release, but may involve altered adhesion and transmigration of neutrophils via fibrinogen-α and CD177.


2020 ◽  
Author(s):  
Hai B Tran ◽  
Rhys Hamon ◽  
Hubertus Jersmann ◽  
Miranda P Ween ◽  
Patrick Asare ◽  
...  

Abstract IntroductionThe role inflammasomes play in chronic obstructive pulmonary disease (COPD) is unclear. We hypothesised that the AIM2 inflammasome is activated in the airways of COPD patients, and in response to cigarette smoke.Methods Lung tissue, bronchoscopy-derived alveolar macrophages and bronchial epithelial cells from COPD patients and healthy donors; lungs from cigarette smoke-exposed mice; and cigarette smoke extract-stimulated alveolar macrophages from healthy controls and HBEC30KT cell line were investigated. AIM2 inflammasome activation was assessed by multi-fluorescence quantitative confocal microscopy of speck foci positive for AIM2, inflammasome component ASC and cleaved IL-1β. Subcellular AIM2 localization was assessed by confocal microscopy, and immunoblot of fractionated cell lysates. Nuclear localization was supported by in-silico analysis of nuclear localization predicted scores of peptide sequences. Nuclear and cytoplasmic AIM2 was demonstrated by immunoblot in both cellular fractions from HBEC30KT cells.Results Increased cytoplasmic AIM2 speck foci, colocalized with cleaved IL-1β, were demonstrated in COPD lungs (n=9) vs. control (n=5), showing significant positive correlations with GOLD stages. AIM2 nuclear-to-cytoplasmic redistribution was demonstrated in bronchiolar epithelium in cigarette-exposed mice and in HBEC30KT cells post 24 hrs stimulation with 5% cigarette smoke extract. Alveolar macrophages from 8 healthy non-smokers responded to cigarette smoke extract with an >8-fold increase (p<0.05) of cytoplasmic AIM2 and >6-fold increase (p<0.01) of colocalized cleaved IL-1β speck foci, which were also localized with ASC.Conclusion The AIM2 inflammasome is activated in the airway of COPD patients, and in response to cigarette smoke exposure, associated with a nuclear to cytoplasmic shift in the distribution of AIM2.


2021 ◽  
Vol 8 (3) ◽  
pp. 96-102
Author(s):  
Nightingale Syabbalo

Chronic obstructive pulmonary disease (COPD) is currently considered the third leading cause of death in the world. COPD represents an important public health challenge and a socio-economical problem that is preventable and treatable. The main cause of COPD is chronic inhalation of cigarette smoke, and other harmful constituents of air pollution, which cause epithelial injury, chronic inflammation and airway remodeling. Airway remodeling is most prominent in small airways. It is due to infiltration of the airways by inflammatory cells, such as neutrophils, eosinophils, macrophages, and immune cells, including CD8+ T-cells, Th1, Th17 lymphocytes, and innate lymphoid cells group 3. Fibroblasts, myofibroblasts, and airway smooth muscle (ASM) cells also contribute to airway remodeling by depositing extracellular matrix (ECM) proteins, which increase the thickness of the airway wall. Activated inflammatory cells, and structural cells secrete cytokines, chemokines, growth factors, and enzymes which propagate airway remodeling. Airway remodeling is an active process which leads to thickness of the reticular basement membrane, subepithelial fibrosis, peribronchiolar fibrosis, and ASM cells hyperplasia and hypertrophy. It is also accompanied by submucosal glands and goblet cells hypertrophy and mucus hypersecretion, and angiogenesis. Epithelial mesenchymal transmission (EMT) plays a key role in airway remodeling. In patients with COPD and smokers, cellular reprograming in epithelial cells leads to EMT, whereby epithelial cells assume a mesencymal phenotype. Additionally, COPD is associated with increased parasympathetic cholinergic activity, which leads to ASM cells hypercontractility, increased mucus secretion, and vasodilatation. Treatment of COPD is intricate because of the heterogeneous nature of the disease, which requires specific treatment of the pathophysiological pathways, such as airway inflammation, ASM cell hypercontractility, and parasympathetic cholinergic hyperreactivity. The Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2020 strategy report recommends personalized approach for the treatment of COPD. However, some patients with COPD are unresponsive to the standards of care. They may require a triple combination of LABA/LAMA/ICS. Single-inhaler triple therapy (SITT), such as fluticasone fuorate/vilanterol/umeclidinium has been shown to significantly improve symptoms and asthma control, reduce moderate and severe exacerbations, and to improve lung function.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Hou ◽  
Siyi Hu ◽  
Chunyan Li ◽  
Hanbin Ma ◽  
Qi Wang ◽  
...  

Chronic obstructive pulmonary disease (COPD) and lung cancer, closely related to smoking, are major lung diseases affecting millions of individuals worldwide. The generated gas mixture of smoking is proved to contain about 4,500 components such as carbon monoxide, nicotine, oxidants, fine particulate matter, and aldehydes. These components were considered to be the principle factor driving the pathogenesis and progression of pulmonary disease. A large proportion of lung cancer patients showed a history of COPD, which demonstrated that there might be a close relationship between COPD and lung cancer. In the early stages of smoking, lung barrier provoked protective response and DNA repair are likely to suppress these changes to a certain extent. In the presence of long-term smoking exposure, these mechanisms seem to be malfunctioned and lead to disease progression. The infiltration of inflammatory cells to mucosa, submucosa, and glandular tissue caused by inhaled cigarette smoke is responsible for the destruction of matrix, blood supply shortage, and epithelial cell death. Conversely, cancer cells have the capacity to modulate the proliferation of epithelial cells and produce of new vascular networks. Comprehension understanding of mechanisms responsible for both pathologies is necessary for the prevention and treatment of COPD and lung cancer. In this review, we will summarize related articles and give a glance of possible mechanism between cigarette smoking induced COPD and lung cancer.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 850
Author(s):  
Maria Letizia Manca ◽  
Maria Ferraro ◽  
Elisabetta Pace ◽  
Serena Di Vincenzo ◽  
Donatella Valenti ◽  
...  

In this work beclomethasone dipropionate was loaded into liposomes and hyalurosomes modified with mucin to improve the ability of the payload to counteract the oxidative stress and involved damages caused by cigarette smoke in the airway. The vesicles were prepared by dispersing all components in the appropriate vehicle and sonicating them, thus avoiding the use of organic solvents. Unilamellar and bilamellar vesicles small in size (~117 nm), homogeneously dispersed (polydispersity index lower than 0.22) and negatively charged (~−11 mV), were obtained. Moreover, these vesicle dispersions were stable for five months at room temperature (~25 °C). In vitro studies performed using the Next Generation Impactor confirmed the suitability of the formulations to be nebulized as they were capable of reaching the last stages of the impactor that mimic the deeper airways, thus improving the deposition of beclomethasone in the target site. Further, biocompatibility studies performed by using 16HBE bronchial epithelial cells confirmed the high biocompatibility and safety of all the vesicles. Among the tested formulations, only mucin-hyalurosomes were capable of effectively counteracting the production of reactive oxygen species (ROS) induced by cigarette smoke extract, suggesting that this formulation may represent a promising tool to reduce the damaging effects of cigarette smoke in the lung tissues, thus reducing the pathogenesis of cigarette smoke-associated diseases such as chronic obstructive pulmonary disease, emphysema, and cancer.


Sign in / Sign up

Export Citation Format

Share Document