scholarly journals Foaming of rhamnolipids fermentation: impact factors and fermentation strategies

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhijin Gong ◽  
Ge Yang ◽  
Chengchuan Che ◽  
Jinfeng Liu ◽  
Meiru Si ◽  
...  

AbstractRhamnolipids have recently attracted considerable attentions because of their excellent biosurfactant performance and potential applications in agriculture, environment, biomedicine, etc., but severe foaming causes the high cost of production, restraining their commercial production and applications. To reduce or eliminate the foaming, numerous explorations have been focused on foaming factors and fermentation strategies, but a systematic summary and discussion are still lacking. Additionally, although these studies have not broken through the bottleneck of foaming, they are conducive to understanding the foaming mechanism and developing more effective rhamnolipids production strategies. Therefore, this review focuses on the effects of fermentation components and control conditions on foaming behavior and fermentation strategies responded to the severe foaming in rhamnolipids fermentation and systematically summarizes 6 impact factors and 9 fermentation strategies. Furthermore, the potentialities of 9 fermentation strategies for large-scale production are discussed and some further strategies are suggested. We hope this review can further facilitate the understanding of foaming factors and fermentation strategies as well as conducive to developing the more effective large-scale production strategies to accelerate the commercial production process of rhamnolipids.

2011 ◽  
Vol 314-316 ◽  
pp. 2433-2438
Author(s):  
Wei Zhi Wang

By only applying a after the event exam in the quality control of the batch production is not enough to meet the needs of modern large-scale production. To a certain extent, modern quality control is a dynamic process of the steady-state judge and adjustment. A simple and reliable steady-state judge rule and method is the premise to guarantee the normal operation. This paper provides a quantitative method to evaluate production process steady-state by analyzing influence factors based on mathematical statistics. The method is both suitable for simple production process and complex production process with sub-processes.


2018 ◽  
Vol 39 (6) ◽  
pp. 2325 ◽  
Author(s):  
Maria Yumbla-Orbes ◽  
José Geraldo Barbosa ◽  
Wagner Campos Otoni ◽  
Marcel Santos Montezano ◽  
José Antônio Saraiva Grossi ◽  
...  

Flowering induction and control is a limiting factor when commercially producing cut flowers of lisianthus and seed exposure to low temperatures, a physiological event called vernalization, induces the differentiation of vegetative buds to reproductive buds, contributing to a flowering that is uniform and has quality. The objective of this study was to evaluate the influence of seed vernalization in three cultivars of lisianthus (Excalibur, Echo and Mariachi) for 12, 24, 36 and 48 days at temperatures of 5, 10 and 15°C, in the production and quality of buds, making this technology feasible to large-scale production. During cultivation it was observed that the lower the temperature and higher the vernalization period, the lower the cycle and the greater the number of plants induced to flowering for all three cultivars, and those are important features in the context of flower production in a commercial scale. The seeds subjected to vernalization originated plants that produce flower stems within the standards required by the market, showing that vernalization was efficient to induce flowering without affecting the quality of the buds. To produce lisianthus as a cut flower of quality, it is recommended seed vernalization of Mariachi and Echo cultivars for 24 days at 5°C and Excalibur for 36 days at 5°C.


2015 ◽  
Vol 719-720 ◽  
pp. 123-126
Author(s):  
Jin Sun ◽  
Qing Zhong Xue ◽  
Yong Gang Du ◽  
Fu Jun Xia ◽  
Qi Kai Guo

Porous graphene is a collection of graphene-related materials which exhibits properties distinct from those of graphene, and it has widespread potential applications in various fields. Several approaches have been developed to produce porous graphene. However, the large-scale production of porous graphene nanosheets still remains a great challenge. Moreover, the costs of some methods are prohibitive for its commercial production and the processes are too complicated and time-consuming. In this work, we propose a simple and green method by which graphene nanosheets can be etched by sodium hydroxide under autogenous pressure at 180 °C. The morphologies and surface elements of the porous graphene nanosheets and sizes of pores were characterized. It is demonstrated that the one-step etching of graphene nanosheets is an effective method to obtain large-scale porous graphene nanosheets with high and uniform porosity. The pores in the porous graphene nanosheets were 6 nm depth (the same as the thickness of the graphene nanosheets) and 30-50 nm width.


1992 ◽  
Vol 269 ◽  
Author(s):  
Walter M. van Loock

ABSTRACTTraditionally the heating and curing of cellular concrete takes place in an autoclave. This building material is a thermal insulator so the curing and drying processes are energy and time consuming. Volumetric heating is an attractive method for improving the throughputs.A feasibility study leads to the conclusion that microwave processing is not likely to be applied in a large scale production process.


2009 ◽  
Vol 1210 ◽  
Author(s):  
John R Mott ◽  
Julio A Bragagnolo ◽  
Michael P. Hayes

AbstractThe relation between impurity content in Solar Grade Silicon (SGS) and solar cell quality is the subject of intensive research. The PV industry has developed around the use of silicon made by the Siemens process for the semiconductor industry, with impurity levels typically in the parts per billion by weight (ppbw) range. There is a growing consensus that SGS with impurities in the parts per million range (ppmw) can be obtained cost effectively from Metallurgical Grade Silicon (MGS) and used to yield solar cells with comparable performance (see for example ‘Beneficial Effects of Dopant Compensation on Carrier Lifetime in Upgraded Metallurgical Silicon’ by S. Dubois et al. in the 23rd European Photovoltaic Solar Energy Conference, Valencia, September, 2008). This provides insight on the success encountered by Timminco, an early SGS market entrant, in commercializing silicon material with [P] levels of the order of 2 ppmw. Current Work We have successfully reduced P to about 2 ppmw, a level that appears acceptable for solar cell fabrication, by application of a novel unidirectional solidification (UDS) technique at a 50% material yield. This is important as UDS, by its nature, implies a loss of silicon, while little or no silicon is lost in B reduction, partially achieved in this furnace using a glass slagging process. Figure 1 shows [P] data from 16 UDS runs on samples taken from the melt, before and after UDS, and a solid sample taken from the silicon frozen on the cold silicon collection surface. The error bars represent a standard 20% error value. We note that the average values of [P] in the molten silicon samples increase from 11.9 ppmw before UDS to 15.9 ppmw after UDS. The average value of [P] in the solid silicon sample is 4.9 ppmw. The average value of the solid silicon, 4.9 ppmw P, taken with the average value of the starting silicon, 11.9 ppmw P, demonstrates an effective refining ratio of 0.41, even at a 50% solid fraction. Performing a second UDS on silicon obtained from runs in Figure 1, yields [P] around 2 ppmw (Figure 2).In addition to P and B reduction, in this paper we also discuss the hardware designed to implement this process in commercial production in volumes exceeding 4,000 MT per year. MB Scientific, the original process developer, and NC Consulting, an engineering company, have developed a plant design that can produce SGS at an estimated cost that will allow for profitable large scale production, and have joined in a new company, Silicon Forge, to commercialize the large-scale production technology.


2020 ◽  
Vol 185 ◽  
pp. 04008
Author(s):  
Dong Tianfei

During the development of pre-made and conditioned foods, the corresponding recipes and process requirements should be met, large-scale production work should be performed in the central kitchen, and then distributed to the terminal stores, so that the conditioned foods become more popular. Based on previous work experience, this paper summarizes the research status of key technologies for preserving and sterilizing pre-processed foods. At the same time, this article discusses the key technical application content of pre-conditioned food processing quality and sterilization from four aspects: the application of ultra-high pressure technology, the prevention and control of common microorganisms, the application of tea polyphenols, and the development trend of pre-conditioned food.


Starch is the major storage carbohydrate of plant products. Amylases are the group of enzymes hydrolyzes starch and related polymers to smaller oligosaccharides and less amount of monosaccharide. Microbes are the major sources of amylases, exploited for large scale production in different industries. Recently, protein engineering has been applied to improve the structural and physicochemical properties of the enzyme for its potential applications. Amylases are mostly used for liquefaction of starch in the purpose of glucose, maltose, and high fructose containing syrup preparation, malto-oligosaccharides production, desizing, production of bio-fuel, detergent preparation, waste management, and preparation of digestive aids.


Sign in / Sign up

Export Citation Format

Share Document