scholarly journals SKP1 promotes YAP-mediated colorectal cancer stemness via suppressing RASSF1

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Cong Tian ◽  
Tingyuan Lang ◽  
Jiangfeng Qiu ◽  
Kun Han ◽  
Lei Zhou ◽  
...  

Abstract Background Cancer stem cells (CSCs) have been recognized as an important drug target, however, the underlying mechanisms have not been fully understood. SKP1 is a traditional drug target for cancer therapy, while, whether SKP1 promotes colorectal cancer (CRC) stem cells (CRC-SCs) and the underlying mechanisms have remained elusive. Methods Human CRC cell lines and primary human CRC cells were used in this study. Gene manipulation was performed by lentivirus system. The mRNA and protein levels of target genes were examined by qRT-PCR and western blot. The sphere-forming and in vitro migration capacities were determined by sphere formation and transwell assay. The self-renewal was determined by limiting dilution assay. The tumorigenicity and metastasis of cancer cells were examined by xenograft model. The promoter activity was examined by luciferase reporter assay. Nuclear run-on and Chromatin immunoprecipitation-PCR (ChIP-PCR) assay were employed to examine the transcription and protein-DNA interaction. Co-immunoprecipitation assay was used to test protein–protein interaction. The relationship between gene expression and survival was analyzed by Kaplan–meier analysis. The correlation between two genes was analyzed by Spearman analysis. Data are represented as mean ± SD and the significance was determined by Student’s t test. Results SKP1 was upregulated in CRC-SCs and predicted poor prognosis of colon cancer patients. Overexpression of SKP1 promoted the stemness of CRC cells reflected by increased sphere-forming, migration and self-renewal capacities as well as the expression of CSCs markers. In contrast, SKP1 depletion produced the opposite effects. SKP1 strengthened YAP activity and knockdown of YAP abolished the effect of SKP1 on the stemness of CRC cells. SKP1 suppressed RASSF1 at both mRNA and protein level. Overexpression of RASSF1 abolished the effect of SKP1 on YAP activity and CRC stemness. Conclusion Our results demonstrated that SKP1 suppresses RASSF1 at both mRNA and protein level, attenuates Hippo signaling, activates YAP, and thereby promoting the stemness of CRC cells.

2020 ◽  
Author(s):  
Cong Tian ◽  
Tingyuan Lang ◽  
Jiangfeng Qiu ◽  
Kun Han ◽  
Lei Zhou ◽  
...  

Abstract Background: Cancer stem cells (CSCs) have been recognized as an important drug target, however, the underlying mechanisms have not been fully understood. SKP1 is a traditional drug target for cancer therapy, while, whether SKP1 promotes colorectal cancer (CRC) stem cells (CRC-SCs) and the underlying mechanisms have remained elusive. Methods: Human CRC cell lines and primary human CRC cells were used in this study. Gene manipulation was performed by lentivirus system. The mRNA and protein levels of target genes were examined by qRT-PCR and western blot. The sphere-forming and in vitro migration capacities were determined by sphere formation and transwell assay. The self-renewal was determined by limiting dilution assay. The tumorigenicity and metastasis of cancer cells were examined by xenograft model. The promoter activity was examined by luciferase reporter assay. Nuclear run-on and Chromatin immunoprecipitation-PCR (ChIP-PCR) assay were employed to examine the transcription and protein-DNA interaction. Co-immunoprecipitation assay was used to test protein-protein interaction. The relationship between gene expression and survival was analyzed by Kaplan-meier analysis. The correlation between two genes was analyzed by Spearman analysis. Data are represented as mean ± s.d. and the significance was determined by Student’s t-test.Results: SKP1 was upregulated in CRC-SCs and predicted poor prognosis of colon cancer patients. Overexpression of SKP1 promoted the stemness of CRC cells reflected by increased sphere-forming, migration and self-renewal capacities as well as the expression of CSCs markers. In contrast, SKP1 depletion produced the opposite effects. SKP1 strengthened YAP activity and knockdown of YAP abolished the effect of SKP1 on the stemness of CRC cells. SKP1 suppressed RASSF1 at both mRNA and protein level. Overexpression of RASSF1 abolished the effect of SKP1 on YAP activity and CRC stemness. Conclusion: Our results demonstrated that SKP1 suppresses RASSF1 at both mRNA and protein level, attenuates Hippo signaling, activates YAP, and thereby promoting the stemness of CRC cells.


2020 ◽  
Author(s):  
Cong Tian ◽  
Tingyuan Lang ◽  
Jiangfeng Qiu ◽  
Kun Han ◽  
Lei Zhou ◽  
...  

Abstract Background: Cancer stem cells (CSCs) have been recognized as an important drug target, however, the underlying mechanisms have not been fully understood. SKP1 is a traditional drug target for cancer therapy, while, whether SKP1 promotes colorectal cancer (CRC) stem cells (CRC-SCs) and the underlying mechanisms have remained elusive.Methods: Human CRC cell lines HCT-116 and HT-29 and primary human colorectal cancer cells were used in this study. Gene manipulation was performed by lentivirus system. The mRNA and protein levels were examined by qRT-PCR and western blot, respectively. Sphere formation and transwell assay were employed for examination of sphere-forming and migration capacities. The self-renewal capacity was determined by limiting dilution assay. The tumorigenicity was examined by xenograft model. The transcriptional activities of the promoters were examined by luciferase reporter assay. Co-immunoprecipitation assay was used to test protein-protein interaction. The transcription and protein-DNA interaction were examined by nuclear run-on and ChIP-PCR assay. The relationship between gene expression and survival was analyzed by Kaplan-meier analysis. The correlation between two genes was analyzed by Spearman analysis. Data are represented as mean ± s.d. and the significance was determined by Student’s t-test.Results: SKP1 is upregulated in colorectal cancer stem cells and predicts poor prognosis of colon cancer patients. Overexpression of SKP1 promotes the sphere-forming and migration capacities as well as self-renewal of CRC cells, and upregulates the expression of CSCs markers. In contrast, SKP1 depletion produces the opposite effects. SKP1 strengthens YAP activity and knockdown of YAP abolished the effect of SKP1 on the stemness of colorectal cancer cells. SKP1 suppresses RASSF1 at both mRNA and protein levels and overexpression of RASSF1 abolished the effect of SKP1.Conclusion: Our results demonstrated that SKP1 suppresses RASSF1 at both mRNA and protein level, attenuates Hippo signaling, activates YAP, and thereby promoting the stemness of CRC cells. Our works thus revealed a novel underlying mechanism of CRC-SCs maintenance and suggested a novel drug target for eradicating CRC-SCs.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Yapeng Ji ◽  
Chuanzhen Yang ◽  
Zefang Tang ◽  
Yongfeng Yang ◽  
Yonglu Tian ◽  
...  

Abstract Targeting the specific metabolic phenotypes of colorectal cancer stem cells (CRCSCs) is an innovative therapeutic strategy for colorectal cancer (CRC) patients with poor prognosis and relapse. However, the context-dependent metabolic traits of CRCSCs remain poorly elucidated. Here we report that adenylate kinase hCINAP is overexpressed in CRC tissues. Depletion of hCINAP inhibits invasion, self-renewal, tumorigenesis and chemoresistance of CRCSCs with a loss of mesenchymal signature. Mechanistically, hCINAP binds to the C-terminal domain of LDHA, the key regulator of glycolysis, and depends on its adenylate kinase activity to promote LDHA phosphorylation at tyrosine 10, resulting in the hyperactive Warburg effect and the lower cellular ROS level and conferring metabolic advantage to CRCSC invasion. Moreover, hCINAP expression is positively correlated with the level of Y10-phosphorylated LDHA in CRC patients. This study identifies hCINAP as a potent modulator of metabolic reprogramming in CRCSCs and a promising drug target for CRC invasion and metastasis.


2018 ◽  
Vol 48 (2) ◽  
pp. 593-604 ◽  
Author(s):  
Jiahui Chu ◽  
Yongfei Li ◽  
Xuemei Fan ◽  
Jingjing Ma ◽  
Jun Li ◽  
...  

Background/Aims: High levels of cancer stem cells (CSCs) in patients with triple-negative breast cancer (TNBC) correlate with risk of poor clinical outcome and possibly contribute to chemoresistance and metastasis in patients with highly malignant TNBC. Aberrant microRNA expression is associated with the dysfunction of self-renewal and proliferation in cancer stem cells, while there is little information about the TNBC-specific microRNAs in regulating CSC ability. Methods: Solexa deep sequencing was performed to detect the expression levels of TNBC or non-TNBC stem cells (CSCs) microRNAs. Mammosphere formation assay, qRT-PCR and the xenograft model in nude mice were performed. Bioinformatic analysis and microarray were used to select the target gene, and luciferase reporter assays were used to confirm the binding sites. Results: Solexa sequencing data exhibited differential expression of 193 microRNAs between TNBC and non-TNBC stem cells. The gene ontology analysis and pathways analyses showed that genes were involved in the maintenance of stemness. MiR-4319 could suppress the self-renewal and formation of tumorspheres in TNBC CSCs through E2F2, and also inhibited tumor initiation and metastasis in vivo. Moreover, increased E2F2 could reverse the effect of miR-4319 on the self-renewal in TNBC CSCs. Conclusions: MiR-4319 suppresses the malignancy of TNBC by regulating self-renewal and tumorigenesis of stem cells and might be a remarkable prognostic factor or therapeutic target for patients with TNBC.


Author(s):  
Zizhen Si ◽  
Lei Yu ◽  
Haoyu Jing ◽  
Lun Wu ◽  
Xidi Wang

Abstract Background Long non-coding RNAs (lncRNA) are reported to influence colorectal cancer (CRC) progression. Currently, the functions of the lncRNA ZNF561 antisense RNA 1 (ZNF561-AS1) in CRC are unknown. Methods ZNF561-AS1 and SRSF6 expression in CRC patient samples and CRC cell lines was evaluated through TCGA database analysis, western blot along with real-time PCR. SRSF6 expression in CRC cells was also examined upon ZNF561-AS1 depletion or overexpression. Interaction between miR-26a-3p, miR-128-5p, ZNF561-AS1, and SRSF6 was examined by dual luciferase reporter assay, as well as RNA binding protein immunoprecipitation (RIP) assay. Small interfering RNA (siRNA) mediated knockdown experiments were performed to assess the role of ZNF561-AS1 and SRSF6 in the proliferative actives and apoptosis rate of CRC cells. A mouse xenograft model was employed to assess tumor growth upon ZNF561-AS1 knockdown and SRSF6 rescue. Results We find that ZNF561-AS1 and SRSF6 were upregulated in CRC patient tissues. ZNF561-AS1 expression was reduced in tissues from treated CRC patients but upregulated in CRC tissues from relapsed patients. SRSF6 expression was suppressed and enhanced by ZNF561-AS1 depletion and overexpression, respectively. Mechanistically, ZNF561-AS1 regulated SRSF6 expression by sponging miR-26a-3p and miR-128-5p. ZNF561-AS1-miR-26a-3p/miR-128-5p-SRSF6 axis was required for CRC proliferation and survival. ZNF561-AS1 knockdown suppressed CRC cell proliferation and triggered apoptosis. ZNF561-AS1 depletion suppressed the growth of tumors in a model of a nude mouse xenograft. Similar observations were made upon SRSF6 depletion. SRSF6 overexpression reversed the inhibitory activities of ZNF561-AS1 in vivo, as well as in vitro. Conclusion In summary, we find that ZNF561-AS1 promotes CRC progression via the miR-26a-3p/miR-128-5p-SRSF6 axis. This study reveals new perspectives into the role of ZNF561-AS1 in CRC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoqing Fan ◽  
Haoran Yang ◽  
Chenggang Zhao ◽  
Lizhu Hu ◽  
Delong Wang ◽  
...  

Abstract Background A large number of preclinical studies have shown that local anesthetics have a direct inhibitory effect on tumor biological activities, including cell survival, proliferation, migration, and invasion. There are few studies on the role of local anesthetics in cancer stem cells. This study aimed to determine the possible role of local anesthetics in glioblastoma stem cell (GSC) self-renewal and the underlying molecular mechanisms. Methods The effects of local anesthetics in GSCs were investigated through in vitro and in vivo assays (i.e., Cell Counting Kit 8, spheroidal formation assay, double immunofluorescence, western blot, and xenograft model). The acyl-biotin exchange method (ABE) assay was identified proteins that are S-acylated by zinc finger Asp-His-His-Cys-type palmitoyltransferase 15 (ZDHHC15). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to explore the mechanisms of ZDHHC15 in effects of local anesthetics in GSCs. Results In this study, we identified a novel mechanism through which local anesthetics can damage the malignant phenotype of glioma. We found that local anesthetics prilocaine, lidocaine, procaine, and ropivacaine can impair the survival and self-renewal of GSCs, especially the classic glioblastoma subtype. These findings suggest that local anesthetics may weaken ZDHHC15 transcripts and decrease GP130 palmitoylation levels and membrane localization, thus inhibiting the activation of IL-6/STAT3 signaling. Conclusions In conclusion, our work emphasizes that ZDHHC15 is a candidate therapeutic target, and local anesthetics are potential therapeutic options for glioblastoma.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lijuan Zou ◽  
Hengpeng He ◽  
Zhiguo Li ◽  
Ou Chen ◽  
Xiukun Jia ◽  
...  

AbstractLong noncoding RNAs (lncRNAs) are implicated tumor development in a range of different cancers, including pancreatic cancer (PC). Cancer stem cells (CSCs), a drug-resistant cancer cell subset, drive tumor progression in PC. In this work, we aimed to investigate the mechanism by which lncRNA LINC00261 affects the biological functions of CSCs during the progression of PC. Microarray analysis of differentially expressed genes and lncRNAs suggested that LINC00261 is downregulated in PC. Both LINC00261 and ITIH5 were confirmed to be downregulated in PC cells and PC stem cells. Gain-of-function and loss-of-function investigations were performed to analyze their effects on cell proliferation, drug resistance, cell cycle distribution, self-renewal, invasion, and ultimately overall tumorigenicity. These experiments revealed that the expression of stem cell markers was reduced, and cell proliferation, self-renewal ability, cell invasion, drug resistance, and tumorigenicity were all suppressed by upregulation of LINC00261 or ITIH5. The results of dual-luciferase reporter gene, ChIP, and RIP assays indicated that LINC00261 binds directly to GATA6, increasing its activity at the ITIH5 promoter. The presence of LINC00261 and GATA6 inhibited the self-renewal and tumorigenesis of PC stem cells, while silence of ITIH5 rescued those functions. Collectively, this study identifies the tumor suppressive activity of LINC00261 in PC, showing that this lncRNA limits the functions of PC stem through an ITIH5/GATA6 regulatory pathway.


2021 ◽  
Author(s):  
Yunxin Zhang ◽  
Kexin Shen ◽  
Hanyi Zha ◽  
Wentao Zhang ◽  
Haishan Zhang

Abstract BackgroundCircular RNA-BTG3 associated nuclear protein (circ-BANP) was identifified to involve in cell proliferation of colorectal cancer (CRC). The aerobic glycolysis is a key metabolism mediating cancer progression. However, the role of circ-BANP on aerobic glycolysis in CRC remains unknown. MethodsThe expression of circ-BANP, microRNA (miR)-874-3p, and mitogen-activated protein kinase 1 (MAPK1) mNRA was detected using quantitative real-time polymerase chain reaction. Cell viability and invasion were measured by cell counting kit-8 assay or transwell assay. Glucose consumption and lactate production were assessed by a glucose and lactate assay kit. XF Extracellular Flux Analyzer was used to determine extracellular acidifification rate (ECAR). Western blot was used to analyze the levels of hexokinase-2 (HK2), pyruvate kinase M2 (PKM2), MAPK1, proliferating cell nuclear antigen (PCNA), Cyclin D1, N-cadherin, E-cadherin, hypoxia inducible factor-1α (HIF-1α), glucose transport protein 1(GLUT1), and c-Myc. The interaction between miR-874-3p and circ-BANP or MAPK1 was confifirmed by dual luciferase reporter assay. In vivo experiments were conducted through the murine xenograft model. ResultsCirc-BANP was up-regulated in CRC tissues and cell lines. Circ-BANP knockdown suppressed CRC cell proliferation, invasion and aerobic glycolysis in vitro as well as inhibited tumor growth in vivo. Circ-BANP was a sponge of miR-874-3p and performed anti-tumor effffects by binding to miR-874-3p in CRC cells. Subsequently, we confifirmed MAPK1 was a target of miR-874-3p and circ-BANP indirectly regulated MAPK1 expression by sponging miR-874-3p. After that, we found MAPK1 overexpression partially reversed circ-BANP deletion-mediated inhibition on cell carcinogenesis and aerobic glycolysis in CRC. ConclusionCirc-BANP accelerated cell carcinogenesis and aerobic glycolysis by regulating MAPK1 through miR- 874-3p in CRC, suggesting a promising therapeutic strategy for CRC treatment.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yicai Zhang ◽  
Yi Sun ◽  
Jinlong Liu ◽  
Yu Han ◽  
Jinglong Yan

The molecular mechanisms how bone marrow-derived mesenchymal stem cells (BMSCs) differentiate into osteoblast need to be investigated. MicroRNAs (miRNAs) contribute to the osteogenic differentiation of BMSCs. However, the effect of miR-346-5p on osteogenic differentiation of BMSCs is not clear. This study is aimed at elucidating the underlying mechanism by which miR-346-5p regulates osteogenic differentiation of human BMSCs. Results of alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining indicated that upregulation of miR-346-5p suppressed osteogenic differentiation of BMSCs, whereas downregulation of miR-346-5p enhanced this process. The protein levels of the osteoblastic markers Osterix and Runt-related transcription factor 2 (Runx2) were decreased in cells treated with miR-346-5p mimic at day 7 and day 14 after being differentiated. By contrast, downregulation of miR-346-5p elevated the protein levels of Osterix and Runx2. Moreover, a dual-luciferase reporter assay revealed that Transmembrane Protein 9 (TMEM9) was a target of miR-346-5p. In addition, the Western Blot results demonstrated that the TMEM9 protein level was significantly reduced by the miR-346-5p mimic whereas downregulation of miR-346-5p improved the protein level of TMEM9. These results together demonstrated that miR-346-5p served a key role in BMSC osteogenic differentiation of through targeting TMEM9, which may provide a novel target for clinical treatments of bone injury.


Sign in / Sign up

Export Citation Format

Share Document