scholarly journals CircRNA_100290 promotes GC cell proliferation and invasion via the miR-29b-3p/ITGA11 axis and is regulated by EIF4A3

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gang Wang ◽  
Dan Sun ◽  
Wenhui Li ◽  
Yan Xin

Abstract Background Circular RNAs (circRNAs) have been reported to be important regulators of the development and progression of various carcinomas. However, the role of circRNA_100290 in gastric cancer (GC) is still unclear. This study aimed to investigate the role of circRNA_100290 in GC invasion and metastasis and the possible underlying mechanism. Methods The expression of circRNA_100290 in GC cells and tissues was examined using quantitative real-time polymerase chain reaction (qRT-PCR). The role of circRNA_100290 in cell proliferation, migration, and invasion was evaluated in the AGS and HGC-27 cell lines in vitro. Bioinformatics tools, dual-luciferase reporter assays, Western blot assays and qRT-PCR were used to explore the pathways downstream of circRNA_100290. The mechanism underlying the regulation of circRNA_100290 expression was explored using RNA immunoprecipitation, qRT-PCR, and Western blot assays. Results The expression of circRNA_100290 was significantly upregulated in GC cells and 102 GC tissues, and high circRNA_100290 expression in GC was closely related to Borrmann’s type, lymph node metastasis and tumour-node-metastasis stage. In vitro, knockdown of circRNA_100290 in AGS and HGC-27 cells significantly inhibited cell proliferation, migration, and invasion. Mechanistically, a dual-luciferase reporter assay confirmed the direct interaction between circRNA_100290 and miR-29b-3p, which targets ITGA11, an oncogene that is closely related to epithelial–mesenchymal transition (EMT). In addition, EIF4A3, an RNA-binding protein (RBP), could inhibit the formation of circRNA_100290 by binding to the flanking sites of circRNA_100290. Low EIF4A3 expression in GC was related to a poor prognosis. Conclusions Elevated circRNA_100290 expression in GC promotes cell proliferation, invasion and EMT via the miR-29b-3p/ITGA11 axis and might be regulated by EIF4A3. CircRNA_100290 might be a promising biomarker and target for GC therapy. Graphical abstract

2021 ◽  
Author(s):  
Gang Wang ◽  
Dan Sun ◽  
Wenhui Li ◽  
Yan Xin

Abstract Background: Circular RNA (circRNA) has been reported as an important regulator in the development and progression of various carcinomas. However, the role of circRNA_100290 in gastric cancer (GC) is still unclear. This study aimed to investigate the role of circRNA_100290 in GC invasion and metastasis and its possible mechanism.Methods: The expression of circRNA_100290 in GC cells and tissues were examined using quantitative real-time polymerase chain reaction (qRT-PCR). The role of circRNA_100290 in cell proliferation, migration, and invasion was evaluated on AGS and HGC-27 cell lines in vitro. Bioinformatics tools, dual-luciferase reporter assay, Western blot assay and qRT-PCR were used to explore the downstream pathways of circRNA_100290. The mechanism underlying the regulation of the expression of circRNA_100290 was explored using RNA immunoprecipitation, qRT-PCR, and Western blot assays.Results: The expression of circRNA_100290 was found significantly upregulated in GC cells and 102 GC tissues, high expression of circRNA_100290 in GC was closely related to Borrmann’s types, lymph node metastasis and tumor-node-metastasis staging. In vitro, knockdown of circRNA_100290 in AGS and HGC-27 cells significantly inhibited cell proliferation, migration, and invasion. Mechanistically, dual-luciferase reporter assay confirmed a direct binding between circRNA_100290 and miR-29b-3p, which targets ITGA11, an oncogene which is closely related to epithelial–mesenchymal transition (EMT). In addition, EIF4A3, one of RNA binding proteins (RBPs), could inhibit the formation of circRNA_100290 via enriching flanking sites of circRNA_100290. Low expression of EIF4A3 in GC was related to a worse prognosis.Conclusions: Elevated circRNA_100290 in GC promotes cell proliferation, invasion and EMT via miR-29b-3p/ITGA11 axi and might be regulated by EIF4A3. CircRNA_100290 might be a promising biomarker and target for GC therapy.


2020 ◽  
Author(s):  
Gang Wang ◽  
Dan Sun ◽  
Wenhui Li ◽  
Yan Xin

Abstract Background Circular RNA (circRNA) has been reported as an important regulator in the development and progression of various carcinomas. However, the role of circRNA_100290 in gastric cancer (GC) is still unclear. This study aimed to investigate the role of circRNA_100290 in GC invasion and metastasis and its possible mechanism.Methods The expression of circRNA_100290 in GC cells and tissues were examined using quantitative real-time polymerase chain reaction (qRT-PCR). The role of circRNA_100290 in cell proliferation, migration, and invasion was evaluated on AGS and HGC-27 cell lines in vitro. Bioinformatics tools, dual-luciferase reporter assay, Western blot assay and qRT-PCR were used to explore the downstream pathways of circRNA_100290. The mechanism underlying the regulation of the expression of circRNA_100290 was explored using RNA immunoprecipitation, qRT-PCR, and Western blot assays.Results The expression of circRNA_100290 was found significantly upregulated in GC cells and 102 GC tissues, high expression of circRNA_100290 in GC was closely related to Borrmann’s types, lymph node metastasis and tumor-node-metastasis staging. In vitro, knockdown of circRNA_100290 in AGS and HGC-27 cells significantly inhibited cell proliferation, migration, and invasion. Mechanistically, dual-luciferase reporter assay confirmed a direct binding between circRNA_100290 and miR-29b-3p, which targets ITGA11, an oncogene which is closely related to epithelial–mesenchymal transition (EMT). In addition, EIF4A3, one of RNA binding proteins (RBPs), could inhibit the formation of circRNA_100290 via enriching flanking sites of circRNA_100290. Low expression of EIF4A3 in GC was related to a worse prognosis.Conclusions Elevated circRNA_100290 in GC promotes cell proliferation, invasion and EMT via miR-29b-3p/ITGA11 axi and might be regulated by EIF4A3. CircRNA_100290 might be a promising biomarker and target for GC therapy.


Vascular ◽  
2021 ◽  
pp. 170853812110521
Author(s):  
Fan Zhu ◽  
Jia Chen ◽  
Mingyao Luo ◽  
Dongting Yao ◽  
Xiaobo Hu ◽  
...  

Objectives To evaluate the potential effect of EphrinB2 in human thoracic aortic dissection (TAD) and to illustrate the mechanisms governing the role of EphrinB2 in the growth of human aortic smooth muscle cells (HASMC). Methods In the study, EphrinB2 expression was investigated by qRT-PCR and immunohistochemistry in 12 pairs of TAD and adjacent human tissues. HASMCs were used for in vitro experiments. Next, EphrinB2 overexpression and depletion in HASMCs were established by EphrinB2-overexpressing vectors and small interfering RNA, respectively. The transfection efficiency was evaluated by qRT-PCR and Western blot. The effects of overexpression and depletion of EphrinB2 on cell proliferation, migration, and invasion were tested in vitro. Cell Counting Kit-8, flow cytometry and transwell migration/invasion, and wound healing assay were used to explore the function of EphrinB2 on HASMC cell lines. The relationship between EphrinB2 and F-actin was assessed by Western blot, immunofluorescence, and Co-IP. Results We found that EphrinB2 was a prognostic biomarker of TAD patients. Moreover, EphrinB2 expression negatively correlated to aortic dissection tissues, and disease incidence of males, suggesting that EphrinB2 might act as a TAD suppressor by promoting proliferation or decreasing apoptosis in HASMC. Next, over-expression of EphrinB2 in HASMC lines drove cell proliferation, migration, and invasion, and inhibited apoptosis while knockdown EphrinB2 showed the opposite phenomenon, respectively. Furthermore, the level of F-actin in mRNA, protein, and distribution in HASMC cell lines highly matched with the expression of EphrinB2, which indicated that EphrinB2 could mediate the HASMC cytoskeleton via inducing F-actin. Conclusions In conclusion, our results first provided the pivotal role of EphrinB2 in HASMC proliferation initiated by mediating F-actin and demonstrated a prognostic biomarker and the potential targets for therapy to prevent thoracic aortic dissection.


2018 ◽  
Vol 46 (4) ◽  
pp. 1365-1380 ◽  
Author(s):  
Tianze Liu ◽  
Xiaojun Wu ◽  
Yizhuo Li ◽  
Wenjing Lu ◽  
Fufu Zheng ◽  
...  

Background/Aims: RBFOX3, an RNA-binding fox protein, plays an important role in the differentiation of neuronal development, but its role in the chemosensitivity of hepatocellular carcinoma (HCC) to 5-FU is unknown. Methods: In this study, we examined the biological functions of RBFOX3 and its effect on the chemosensitivity of HCC cells to 5-FU in vitro and in a mouse xenograft model. Results: RBFOX3 was found to have elevated expression in HCC cell lines and tissue samples, and its knockdown inhibited HCC cell proliferation. Moreover, knockdown of RBFOX3 improved the inhibitory effect of 5-fluorouracil (5-FU) on cell proliferation, migration and invasion, and enhanced the apoptosis induced by 5-FU. However, overexpression of RBFOX3 reduced the inhibitory effect of 5-fluorouracil (5-FU) on cell proliferation, migration and invasion, and decreased the apoptosis induced by 5-FU. We further elucidated that RBFOX3 knockdown synergized with 5-FU to inhibit the growth and invasion of HCC cells through PI3K/AKT and epithelial-mesenchymal transition (EMT) signaling, and promote apoptosis by activating the cytochrome-c/caspase signaling pathway. Finally, we validated that RBFOX3 regulated 5-FU-mediated cytotoxicity in HCC in mouse xenograft models. Conclusions: The findings from this study indicate that RBFOX3 regulates the chemosensitivity of HCC to 5-FU in vitro and in vivo. Therefore, targeting RBFOX3 may improve the inhibition of HCC growth and progression by 5-FU, and provide a novel potential therapeutic strategy for HCC.


2018 ◽  
Vol 314 (6) ◽  
pp. C690-C701 ◽  
Author(s):  
Yun-xiao Zhou ◽  
Chuan Wang ◽  
Li-wei Mao ◽  
Yan-li Wang ◽  
Li-qun Xia ◽  
...  

LncRNA homeobox (HOX) transcript antisense intergenic RNA (HOTAIR) has been confirmed to be involved in the tumorigenic progression of endometrial carcinoma (EC). However, the molecular mechanisms of HOTAIR in EC are not fully elucidated. The expression of HOTAIR and miR-646 in human EC tissues was determined by qRT-PCR. The effect of miR-646 on EC cells was assessed by the cell viability, migration, and invasion using CCK-8 assays and transwell assays. RNA-binding protein immunoprecipitation assays and RNA pull-down assays were performed to explore the interaction between HOTAIR and miR-646. The regulation of miR-646 on nucleophosmin 1 (NPM1) was tested using luciferase reporter assays. MiR-646 expression was significantly decreased both in human EC tissues ( n = 23) and cell lines (Ishikawa and HEC-1-A) compared with the control. Moreover, miR-646 expression was negatively related to HOTAIR in human EC tissues ( n = 23). Our results also showed that miR-646 overexpression considerably attenuated the E2-promoted viability, migration, and invasion of Ishikawa and HEC-1-A cells in vitro. In addition, HOTAIR was confirmed to regulate the viability, migration, and invasion of EC cells through negative regulating miR-646. More importantly, we also demonstrated that NPM1 was the target of miR-646, and HOTAIR promoted NPM1 expression through interacting with miR-646 in EC cells. Taken together, our findings presented that HOTAIR could regulate NPM1 via interacting with miR-646, thereby governing the viability, migration, and invasion of EC cells.


2020 ◽  
Author(s):  
Dan Yin ◽  
Zhi-Qiang Hu ◽  
Chu-Bin Luo ◽  
Xiao-Yi Wang ◽  
Hao-Yang Xin ◽  
...  

Abstract Background: Long non-coding RNAs (lncRNAs) have been found to be functionally associated with cancer development and progression. Although copy number variations (CNVs) are common in hepatocellular carcinoma (HCC), little is known about how CNVs in lncRNAs affect HCC progression and recurrence.Methods: We analyzed the whole genome sequencing (WGS) data of matched cancerous and non-cancerous liver samples from 49 patients with HCC to identify lncRNAs with CNVs. The results were validated in another cohort of 238 paired HCC and non-tumor samples by TaqMan copy number assay. Kaplan-Meier analysis and the log-rank test were performed to determine the prognostic value of CNVs in lincRNAs. Loss- and gain-of-function studies were conducted to determine the biological functions of LINC01133 in vitro and in vivo. The competing endogenous RNAs (ceRNAs) mechanism was clarified by microRNA sequencing (miR-seq), quantitative real-time PCR (qRT-PCR), western blot, and dual-luciferase reporter analyses. The protein binding mechanism was confirmed by RNA pull-down, RNA immunoprecipitation (RIP), qRT-PCR, and western blot analyses.Results: Genomic copy number of LINC01133 was increased in HCC, which is positively related with the elevated expression of LINC01133. Increased copy number of LINC01133 predicted the poor prognosis in HCC patients. LINC01133 overexpression promoted proliferation, colony formation, migration, and invasion in vitro, and facilitated tumor growth and lung metastasis in vivo, whereas LINC01133 knockdown had the opposite effects. Mechanistically, LINC01133 acted as a sponge of miR-199a-5p, resulting in enhanced expression of SNAI1, which induced epithelial-mesenchymal transition (EMT) in HCC cells. In addition, LINC01133 interacted with Annexin A2 (ANXA2) to activate ANXA2/STAT3 signaling pathway.Conclusions: LINC01133 promotes HCC progression by sponging miR-199a-5p and interacting with ANXA2. LINC01133 CNV gain is predictive of poor prognosis in HCC patients undergoing curative resection.


2021 ◽  
Author(s):  
Yuhong Liu ◽  
Tao Lu ◽  
Min Pan ◽  
Dan Yu ◽  
Yanshi Li ◽  
...  

Abstract Background: Hypopharyngeal squamous cell carcinoma (HSCC) has the worst prognosis among head and neck tumours, and Lymph node (LN) metastasis mainly accounts for the poor prognosis. RBM24 (RNA Binding Motif Protein 24) regulates target RNA as an RNA binding protein involved in several cancers. However, its role in HSCC remains completely unknown. Here we attempt to explore the effects of RBM24 on HSCC. Methods: RNA sequencing was conducted to find the differentially expressed genes in tumour tissues from HSCC patients with LN metastasis and without LN metastasis in our previous study. Expression of RBM24 in HSCC tissues was analyzed by qRT-PCR, western blot and immunohistochemistry. Cell proliferation was tested by CCK8 assay as well as Colony formation analysis. Cell migration and invasion capacity were estimated by transwell assay. The wound healing assay was also carried out to evaluate the motility of FaDu cells. QRT-PCR, western blot and immunofluorescence assays were conducted to detect the process of EMT. A popliteal lymph node metastasis model was constructed to explore the effect of RBM24 on HSCC in vivo.Results: RBM24 was remarkably down-regulated in HSCC patients with LN metastasis, and low expression of RBM24 was inextricably linked to the poor prognosis. Knockdown of RBM24 facilitated the proliferation, migration and invasion of RBM24, whereas overexpression of RBM24 showed the opposite effects and suppressed the epithelial-mesenchymal-transition (EMT) process. Overexpression of Twist1 could reverse the inhibitory effects of RBM24 on motility and invasion of FaDu cells. The inhibitory effects of RBM24 on tumour growth and lymphatic metastasis in HSCC were demonstrated by the in vivo experiment as well.Conclusions: These results indicated RBM24 was a suppressor gene and might inhibit EMT and LN metastasis in HSCC via regulating Twist1.


2020 ◽  
Vol 20 (10) ◽  
pp. 1197-1208
Author(s):  
Zhuo Ma ◽  
Kai Li ◽  
Peng Chen ◽  
Qizheng Pan ◽  
Xuyang Li ◽  
...  

Background: Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis remains the main cause of mortality in OS patients. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Objective: Thus, elucidating the role of miRNA dysregulation in OS metastasis may provide novel therapeutic targets. Methods: The previous study found a low miR-134 expression level in the OS specimens compared with paracancer tissues. Overexpression of miR-134 stable cell lines was established. Cell viability assay, cell invasion and migration assay and apoptosis assay were performed to evaluate the role of miR-134 in OS in vitro. Results: We found that miR-134 overexpression inhibits cell proliferation, migration and invasion, and induces cell apoptosis in both MG63 and Saos-2 cell lines. Mechanistically, miR-134 targets the 3'-UTR of VEGFA and MYCN mRNA to silence its translation, which was confirmed by luciferase-reporter assay. The real-time PCR analysis illustrated that miR-134 overexpression decreases VEGFA and MYCN mRNA levels. Additionally, the overexpression of VEGFA or MYCN can partly attenuate the effects of miR-134 on OS cell migration and viability. Furthermore, the overexpression of miR-134 dramatically inhibits tumor growth in the human OS cell line xenograft mouse model in vivo. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-134 is regulated by Interferon Regulatory Factor (IRF1), which binds to its promoter and activates miR-134 expression. Conclusion: Our study demonstrates that IRF1 is a key player in the transcriptional control of miR-134, and it inhibits cell proliferation, invasion and migration in vitro and in vivo via targeting VEGFA and MYCN.


2018 ◽  
Vol 96 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Ping He ◽  
Xiaojie Jin

Objective: The aim of this study was to investigate the role of SOX10 in nasopharyngeal carcinoma (NPC) and the underlying molecular mechanisms. Methods: The expression of SOX10 was initially assessed in human NPC tissues and a series of NPC cell lines through quantitative real-time PCR (qRT-PCR) and Western blot. Then, cell proliferation, cycle, migration, and the invasiveness of NPC cells with knockdown of SOX10 were examined by MTT, flow cytometry, and Transwell migration and invasion assays, respectively. Finally, nude mice tumorigenicity experiments were performed to evaluate the effects of SOX10 on NPC growth and metastasis in vivo. Results: SOX10 was significantly increased in NPC tissues and cell lines. In-vitro experiments revealed that loss of SOX10 obviously inhibited cell proliferation, migration, and invasiveness, as well as the epithelial–mesenchymal transition (EMT) process in NPC cells. In-vivo experiments further demonstrated that disrupted SOX10 expression restrained NPC growth and metastasis, especially in lung and liver. Conclusion: Taken together, our data confirmed the role of SOX10 as an oncogene in NPC progression, and revealed that SOX10 may serve as a novel biomarker for diagnosis of NPC, as well as a potential therapeutic target against this disease.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Ben Yue ◽  
Chenlong Song ◽  
Linxi Yang ◽  
Ran Cui ◽  
Xingwang Cheng ◽  
...  

Abstract Background As one of the most frequent chemical modifications in eukaryotic mRNAs, N6-methyladenosine (m6A) modification exerts important effects on mRNA stability, splicing, and translation. Recently, the regulatory role of m6A in tumorigenesis has been increasingly recognized. However, dysregulation of m6A and its functions in tumor epithelial-mesenchymal transition (EMT) and metastasis remain obscure. Methods qRT-PCR and immunohistochemistry were used to evaluate the expression of methyltransferase-like 3 (METTL3) in gastric cancer (GC). The effects of METTL3 on GC metastasis were investigated through in vitro and in vivo assays. The mechanism of METTL3 action was explored through transcriptome-sequencing, m6A-sequencing, m6A methylated RNA immunoprecipitation quantitative reverse transcription polymerase chain reaction (MeRIP qRT-PCR), confocal immunofluorescent assay, luciferase reporter assay, co-immunoprecipitation, RNA immunoprecipitation and chromatin immunoprecipitation assay. Results Here, we show that METTL3, a major RNA N6-adenosine methyltransferase, was upregulated in GC. Clinically, elevated METTL3 level was predictive of poor prognosis. Functionally, we found that METTL3 was required for the EMT process in vitro and for metastasis in vivo. Mechanistically, we unveiled the METTL3-mediated m6A modification profile in GC cells for the first time and identified zinc finger MYM-type containing 1 (ZMYM1) as a bona fide m6A target of METTL3. The m6A modification of ZMYM1 mRNA by METTL3 enhanced its stability relying on the “reader” protein HuR (also known as ELAVL1) dependent pathway. In addition, ZMYM1 bound to and mediated the repression of E-cadherin promoter by recruiting the CtBP/LSD1/CoREST complex, thus facilitating the EMT program and metastasis. Conclusions Collectively, our findings indicate the critical role of m6A modification in GC and uncover METTL3/ZMYM1/E-cadherin signaling as a potential therapeutic target in anti-metastatic strategy against GC.


Sign in / Sign up

Export Citation Format

Share Document