scholarly journals m6A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Bo Tang ◽  
Yihua Yang ◽  
Min Kang ◽  
Yunshan Wang ◽  
Yan Wang ◽  
...  

Abstract Background Pancreatic cancer is one of the most lethal types of cancer with extremely poor diagnosis and prognosis, and chemo-resistance remains a major challenge. The dynamic and reversible N6-methyladenosine (m6A) RNA modification has emerged as a new layer of epigenetic gene regulation. Methods qRT-PCR and IHC were applied to examine ALKBH5 levels in normal and pancreatic cancer tissues. Cancer cell proliferation and chemo-resistance were evaluated by clonogenic formation, chemosensitivity detection, and Western blotting assays. m6A-seq was performed to identify target genes. We evaluated the inhibitory effect of ALKBH5 in both in vivo and in vitro models. Results Here, we show that m6A demethylase ALKBH5 is downregulated in gemcitabine-treated patient-derived xenograft (PDX) model and its overexpression sensitized pancreatic ductal adenocarcinoma (PDAC) cells to chemotherapy. Decreased ALKBH5 levels predicts poor clinical outcome in PDAC and multiple other cancers. Furthermore, silencing ALKBH5 remarkably increases PDAC cell proliferation, migration, and invasion both in vitro and in vivo, whereas its overexpression causes the opposite effects. Global m6A profile revealed altered expression of certain ALKBH5 target genes, including Wnt inhibitory factor 1 (WIF-1), which is correlated with WIF-1 transactivation and mediation of the Wnt pathway. Conclusions Our work uncovers the tumor suppressive and chemo-sensitizing function for ALKBH5, which provides insight into critical roles of m6A methylation in PDAC.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jing Chen ◽  
Cui-Cui Zhao ◽  
Fei-Ran Chen ◽  
Guo-Wei Feng ◽  
Fei Luo ◽  
...  

Background. Pancreatic cancer is a malignant tumor of the digestive tract, which is difficult to diagnose and treat due to bad early diagnosis. We aimed to explore the role of kinesin superfamily 4A (KIF4A) in pancreatic ductal adenocarcinoma (PDAC). Methods. We first used the bioinformatic website to screen the data of pancreatic cancer in TCGA, and KIF4A protein was detected among the 86 specimens of patients in our hospital combined with clinic-pathological characteristics and survival analysis. KIF4A loss-expression cell lines were established by RNA interference (RNAi). In addition, we performed in vitro cell assays to detect the changes in cell proliferation, migration, and invasion. The proteins involved in the proliferation and metastasis of cancer cells were also detected by western blot. The above results could be proved in vivo. Further, the correlation between KIF4A and CDC5L was analyzed by TCGA and IHC data. Results. We first found a high expression of KIF4A in pancreatic cancer, suggesting a role of KIF4A in the development of pancreatic cancer. KIF4A was found to be differentially expressed ( P < 0.05 ) among the 86 specimens of patients in our hospital and was significantly associated with PDAC TNM stages and tumor size. High KIF4A expression also significantly worsened overall survival (OS) and disease-free survival rate (DFS) ( P < 0.05 , respectively). In addition, cell proliferation, migration, and invasion were inhibited by the KIF4A-shRNA group compared with the control ( P < 0.05 , respectively). In the end, knockdown of KIF4A could inhibit tumor development and metastasis in vivo. Further, the positive correlation between KIF4A and CDC5L existed, and KIF4A might promote pancreatic cancer proliferation by affecting CDC5L expression. Conclusion. In conclusion, the high expression level of KIF4A in PDAC was closely related to poor clinical and pathological status, lymphatic metastasis, and vascular invasion. KIF4A might be involved in promoting the development of PDAC in vitro and in vivo, which might be a new therapeutic target of PDAC.


2018 ◽  
Vol 17 (4) ◽  
pp. 1016-1019 ◽  
Author(s):  
Chao Qu ◽  
Qing Wang ◽  
Zhiqiang Meng ◽  
Peng Wang

Pancreatic ductal adenocarcinoma is characterized by an extensive stromal response called desmoplasia. Within the tumor stroma, cancer-associated fibroblasts (CAFs) are the primary cell type. CAFs have been shown to play a role in pancreatic cancer progression; they secrete growth factors, inflammatory cytokines, and chemokines that stimulate signaling pathways in cancer cells and modulate the cancer biology toward increased aggressiveness. Therefore, targeting CAFs may serve as a powerful weapon against pancreatic cancer and improve therapeutic effects. However, a previous study aiming to deplete CAFs by inhibiting sonic Hedgehog signaling failed to show any benefit in survival time of pancreatic cancer patients. We reported that the natural product curcumin reeducated CAFs in pancreatic cancer treatment. A low concentration of curcumin reversed the activation of fibroblasts without exhibiting growth suppression effects. In addition, curcumin suppressed CAF-induced pancreatic cancer cell migration and invasion in vitro and lung metastasis in vivo. The results of our study suggest that active CAFs can be inactivated by certain natural products such as curcumin. Reeducation of CAFs back to their normal state, rather than their indiscriminate depletion, may broaden our view in the development of therapeutic options for the treatment of pancreatic cancer.


2021 ◽  
Vol 10 ◽  
Author(s):  
Junxiong Wang ◽  
Shuo Yang ◽  
Li Min ◽  
Shengtao Zhu ◽  
Shuilong Guo ◽  
...  

The poor prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) is associated with the invasion and metastasis of tumor cells. Epithelial cell transforming 2 (ECT2) is a guanine nucleotide exchange factor (GEF) of the Rho family of GTPases. It has also been reported that upregulation of ECT2 in pancreatic cancer, but the role and mechanism of ECT2 have not been previously determined. We found that ECT2 was significantly elevated in PDAC tissues and cells, correlated with more advanced AJCC stage, distant metastases, and overall survival of patients with PDAC. Inhibition and overexpression tests showed that ECT2 promoted proliferation, migration and invasion in vitro, and promoted tumor growth and metastasis in vivo. We determined that ECT2 was involved in the post-translational regulation of Grb2. ECT2 inhibited the degradation of Grb2 through deubiquitination. Furthermore, knockdown of ECT2 downregulated EGFR levels by accelerating EGFR degradation. EGF stimulation facilitated the formation of ECT2-Grb2 complex. Overall, our findings indicated that ECT2 could be used as a promising new therapeutic candidate for PDAC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jianyou Gu ◽  
Wenjie Huang ◽  
Junfeng Zhang ◽  
Xianxing Wang ◽  
Tian Tao ◽  
...  

Transmembrane protease serine 4 (TMPRSS4) is upregulated in various kinds of human cancers, including pancreatic cancer. However, its biological function in pancreatic ductal adenocarcinoma (PDAC) remains unclear. In the current study, real-time qPCR, immunohistochemical staining, Western blotting, and database (Cancer Genome Atlas and Gene Expression) analysis revealed remarkable overexpression of TMPRSS4 in PDAC tissue as compared to non-tumor tissue. The TMPRSS4 overexpression was associated with poor prognosis of PDAC patients. Moreover, multivariate analysis revealed that TMPRSS4 serves as an independent risk factor in PDAC. We performed gain-and loss-of-function analysis and found that TMPRSS4 promotes cellular proliferation and inhibits apoptosis of PDAC cells both in vitro and in vivo. Furthermore, we showed that TMPRSS4 might promote cell proliferation and inhibit apoptosis through activating ERK1/2 signaling pathway in pancreatic cancer cells. These findings were validated by using ERK1/2 phosphorylation inhibitor SCH772984 both in vitro and in vivo. Taken together, this study suggests that TMPRSS4 is a proto-oncogene, which promotes initiation and progression of PDAC by controlling cell proliferation and apoptosis. Our findings indicate that TMPRSS4 could be a promising prognostic biomarker and a therapeutic target for the treatment of pancreatic cancer.


2021 ◽  
Vol 16 (1) ◽  
pp. 495-510
Author(s):  
Jie Zhang ◽  
Zhang Zhang

Abstract Background The purpose of the study was to explore the precise parts of circ_0066147 (circular RNA [circRNA] scm-like with four mbt domains 1, circSFMBT1) in pancreatic cancer (PC) progression. Methods Ribonuclease R assay was used to confirm the stability of circ_0066147. circ_0066147, miR-326 and E2F transcription factor 2 (E2F2) expression levels was detected by quantitative reverse-transcription polymerase chain reaction or Western blot. Cell proliferation, apoptosis, migration and invasion abilities were assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, flow cytometry, wound-healing and transwell assays, respectively. Targeted relationships among circ_0066147, miR-326 and E2F2 were verified by the dual-luciferase reporter or RNA pull-down assay. Results circ_0066147 expression was upregulated in PC tissues and cells. circ_0066147 knockdown inhibited PC cell proliferation, migration, invasion and enhanced apoptosis in vitro, as well as weakened tumor growth in vivo. Mechanistically, circ_0066147 directly targeted miR-326 and circ_0066147 modulated E2F2 expression by miR-326. miR-326 mediated the regulation of circ_0066147 in PC cell behaviors in vitro. Furthermore, E2F2 was a functional target of miR-326 in modulating PC cell behaviors in vitro. Conclusion circ_0066147 regulated PC malignant progression in part depending on the miR-326/E2F2 axis, illuminating circ_0066147 was a potential prognostic marker and therapeutic target for PC management.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jia-Huang Liu ◽  
Qi-Fei Wu ◽  
Jun-Ke Fu ◽  
Xiang-Ming Che ◽  
Hai-Jun Li

Obesity could increase the risk of esophageal squamous cell carcinoma (ESCC) and affect its growth and progression, but the mechanical links are unclear. The objective of the study was to explore the impact of obesity on ESCC growth and progression utilizing in vivo trials and cell experiments in vitro. Diet-induced obese and lean nude mice were inoculated with TE-1 cells, then studied for 4 weeks. Serum glucose, insulin, leptin, and visfatin levels were assayed. Sera of nude mice were obtained and then utilized to culture TE-1. MTT, migration and invasion assays, RT-PCR, and Western blotting were used to analyze endocrine effect of obesity on cell proliferation, migration, invasion, and related genes expression of TE-1. Obese nude mice bore larger tumor xenografts than lean animals, and were hyperglycemic and hyperinsulinemic with an elevated level of leptin and visfatin in sera, and also were accompanied by a fatty liver. As for the subcutaneous tumor xenograft model, tumors were more aggressive in obese nude mice than lean animals. Tumor weight correlated positively with mouse body weight, liver weight of mice, serum glucose, HOMA-IR, leptin, and visfatin. Obesity prompted significant TE-1 cell proliferation, migration, and invasion by endocrine mechanisms and impacted target genes. The expression of AMPK and p-AMPK protein decreased significantly ( P < 0.05 ); MMP9, total YAP, p-YAP, and nonphosphorylated YAP protein increased significantly ( P < 0.05 ) in the cells cultured with conditioned media and xenograft tumor from the obese group; the mRNA expression of AMPK decreased significantly ( P < 0.05 ); YAP and MMP9 mRNA expression increased significantly ( P < 0.05 ) in the cells exposed to conditioned media from the obese group. In conclusion, the altered adipokine milieu and metabolites in the context of obesity may promote ESCC growth in vivo; affect proliferation, migration, and invasion of ESCC cells in vitro; and regulate MMP9 and AMPK-YAP signaling pathway through complex effects including the endocrine effect.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zehua Zhang ◽  
Fei Dai ◽  
Fei Luo ◽  
Wenjie Wu ◽  
Shuai Zhang ◽  
...  

AbstractOsteosarcoma is a malignant osteoblastic tumor that can gravely endanger the lives and health of children and adolescents. Therefore, there is an urgent need to explore new biomarkers for osteosarcoma and determine new targeted therapies to improve the efficacy of osteosarcoma treatment. Diaphanous related formin 3 (DIAPH3) promotes tumorigenesis in hepatocellular carcinoma and lung adenocarcinoma, suggesting that DIAPH3 may be a target for tumor therapy. To date, there have been no reports on the function of DIAPH3 in osteosarcoma. DIAPH3 protein expression in osteosarcoma tissues and healthy bone tissues adjacent to cancer cells was examined by immunohistochemical staining. DIAPH3 mRNA expression correlates with overall survival and reduced disease-free survival. DIAPH3 protein is upregulated in osteosarcoma tissues, and its expression is significantly associated with tumor size, tumor stage, node metastasis, and distant metastasis. Functional in vitro experiments revealed that DIAPH3 knockdown suppressed cell proliferation and suppressed cell migration and invasion of osteosarcoma cell lines MG-63 and HOS. Functional experiments demonstrated that DIAPH3 knockdown inhibited subcutaneous tumor growth and lung metastasis in vivo. In conclusion, DIAPH3 expression can predict the clinical outcome of osteosarcoma. In addition, DIAPH3 is involved in the proliferation and metastasis of osteosarcoma, and as such, DIAPH3 may be a potential therapeutic target for osteosarcoma.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Jingpeng Wang ◽  
Shuyuan Li ◽  
Gaofeng Zhang ◽  
Huihua Han

Abstract Background Sevoflurane (Sev), a commonly used volatile anesthetic, has been reported to inhibit the process of colorectal cancer (CRC). Circular RNAs (circRNAs) are revealed to participate in the pathogenesis of CRC. This study aims to reveal the mechanism of hsa_circ_0000231 in Sev-mediated CRC progression. Methods The expression of hsa_circ_0000231 and microRNA-622 (miR-622) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein level was determined by western blot analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell colony formation and DNA content quantitation assays. Cell apoptosis was detected by Annexin V-fluorescein isothiocyanate and propidium iodide double staining and caspase 3 activity assays. Cell migration and invasion were investigated by wound-healing and transwell invasion assays, respectively. The putative relationship between hsa_circ_0000231 and miR-622 was predicted by circular RNA Interactome online database, and identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of hsa_circ_0000231 on Sev-mediated tumor formation in vivo were presented by in vivo assay. Results Hsa_circ_0000231 expression was upregulated, while miR-622 was downregulated in CRC tissues and cells compared with control groups. Sev treatment decreased hsa_circ_0000231 expression, but increased miR-622 expression in CRC cells. Sev treatment suppressed cell proliferation, migration and invasion, and induced cell apoptosis. Hsa_circ_0000231 overexpression restored Sev-mediated CRC progression in vitro. Additionally, hsa_circ_0000231 acted as a sponge of miR-622, and miR-622 inhibitors reversed the impacts of hsa_circ_0000231 silencing on CRC process. Furthermore, Sev treatment inhibited tumor growth by regulating hsa_circ_0000231 in vivo. Conclusion Hsa_circ_0000231 attenuated Sev-aroused repression impacts on CRC development by sponging miR-622. This findings may provide an appropriate anesthetic protocol for CRC sufferers undergoing surgery.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Feng Guo ◽  
Yingke Zhou ◽  
Hui Guo ◽  
Dianyun Ren ◽  
Xin Jin ◽  
...  

AbstractNR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document