scholarly journals Bi-functionalized aminoguanidine-PEGylated periodic mesoporous organosilica nanoparticles: a promising nanocarrier for delivery of Cas9-sgRNA ribonucleoproteine

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Pardis Rahimi Salekdeh ◽  
Leila Ma’mani ◽  
Javad Tavakkoly-Bazzaz ◽  
Hossein Mousavi ◽  
Mohammad Hossein Modarressi ◽  
...  

Abstract Background There is a great interest in the efficient intracellular delivery of Cas9-sgRNA ribonucleoprotein complex (RNP) and its possible applications for in vivo CRISPR-based gene editing. In this study, a nanoporous mediated gene-editing approach has been successfully performed using a bi-functionalized aminoguanidine-PEGylated periodic mesoporous organosilica (PMO) nanoparticles (RNP@AGu@PEG1500-PMO) as a potent and biocompatible nanocarrier for RNP delivery. Results The bi-functionalized MSN-based nanomaterials have been fully characterized using electron microscopy (TEM and SEM), nitrogen adsorption measurements, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and dynamic light scattering (DLS). The results confirm that AGu@PEG1500-PMO can be applied for gene-editing with an efficiency of about 40% as measured by GFP gene knockdown of HT1080-GFP cells with no notable change in the morphology of the cells. Conclusions Due to the high stability and biocompatibility, simple synthesis, and cost-effectiveness, the developed bi-functionalized PMO-based nano-network introduces a tailored nanocarrier that has remarkable potential as a promising trajectory for biomedical and RNP delivery applications.

2020 ◽  
Vol 10 (17) ◽  
pp. 5960
Author(s):  
Suheir Omar ◽  
Raed Abu-Reziq

We describe, for the first time, a successful strategy for synthesizing chiral periodic mesoporous organosilica nanoparticles (PMO NPs). The chiral PMO nanoparticles were synthesized in a sol–gel process under mild conditions; their preparation was mediated by hydrolysis and condensation of chiral-bridged organo-alkoxysilane precursor compounds, (OR‘)3Si-R-Si(OR‘)3, in the presence of cetyltrimethylammonium bromide (CTAB) surfactant. The resulting nanoparticles were composed merely from a chiral- bridged organo-alkoxysilane monomer. These systems were prepared by applying different surfactants and ligands that finally afforded monodispersed chiral PMO NPs consisting of 100% bridged-organosilane precursor. In addition, the major advancement that was achieved here was, for the first time, success in preparing magnetic chiral PMO NPs. These nanoparticles were synthesized by the co-polymerization of 1,1′-((1R,2R)-1,2-diphenylethane-1,2-diyl)bis(3-(3-(triethoxysilyl) propyl) urea) chiral monomer by an oil in water (o/w) emulsion process, to afford magnetic chiral PMO NPs with magnetite NPs in their cores. The obtained materials were characterized with high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX) spectroscopy, powder X-ray diffraction (XRD), solid-state NMR analysis, circular dichroism (CD) analysis, and nitrogen sorption analysis (N2-BET).


2020 ◽  
Vol 10 (17) ◽  
pp. 5769
Author(s):  
Suheir Omar ◽  
Raed Abu-Reziq

A facile and direct method for synthesizing magnetic periodic mesoporous organosilica nanoparticles from pure organosilane precursors is described. Magnetic ethylene- and phenylene-bridged periodic mesoporous organosilica nanoparticles (PMO NPs) were prepared by nanoemulsification techniques. For fabricating magnetic ethylene- or phenylene-bridged PMO NPs, hydrophobic magnetic nanoparticles in an oil-in-water (o/w) emulsion were prepared, followed by a sol–gel condensation of the incorporated bridged organosilane precursor (1,2 bis(triethoxysilyl)ethane or 1,4 bis(triethoxysilyl)benzene), respectively. The resulting materials were characterized using high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX) spectroscopy, powder X-ray diffraction (XRD), solid-state NMR analysis, and nitrogen sorption analysis (N2-BET). The magnetic ethylene-bridged PMO NPs were successfully loaded using a ruthenium oxide catalyst by means of sonication and evaporation under mild conditions. The obtained catalytic system, termed Ru@M-Ethylene-PMO NPS, was applied in a reduction reaction of aromatic compounds. It exhibited very high catalytic behavior with easy separation from the reaction medium by applying an external magnetic field.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 931
Author(s):  
Ioana-Codruţa Mirică ◽  
Gabriel Furtos ◽  
Ondine Lucaciu ◽  
Petru Pascuta ◽  
Mihaela Vlassa ◽  
...  

The aim of this research was to develop new electrospun membranes (EMs) based on polycaprolactone (PCL) with or without metronidazole (MET)/nano-hydroxyapatite (nHAP) content. New nHAP with a mean diameter of 34 nm in length was synthesized. X-ray diffraction (XRD) and attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR) were used for structural characterization of precursors and EMs. The highest mechanical properties (the force at maximum load, Young’s modulus and tensile strength) were found for the PCL membranes, and these properties decreased for the other samples in the following order: 95% PCL + 5% nHAP > 80% PCL + 20% MET > 75% PCL + 5% nHAP + 20% MET. The stiffness increased with the addition of 5 wt.% nHAP. The SEM images of EMs showed randomly oriented bead-free fibers that generated a porous structure with interconnected macropores. The fiber diameter showed values between 2 and 16 µm. The fiber diameter increased with the addition of nHAP filler and decreased when MET was added. New EMs with nHAP and MET could be promising materials for guided bone regeneration or tissue engineering.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 825
Author(s):  
Saman Sargazi ◽  
Mohammad Reza Hajinezhad ◽  
Abbas Rahdar ◽  
Muhammad Nadeem Zafar ◽  
Aneesa Awan ◽  
...  

In this research, tin ferrite (SnFe2O4) NPs were synthesized via hydrothermal route using ferric chloride and tin chloride as precursors and were then characterized in terms of morphology and structure using Fourier-transform infrared spectroscopy (FTIR), Ultraviolet–visible spectroscopy (UV-Vis), X-ray power diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) method. The obtained UV-Vis spectra was used to measure band gap energy of as-prepared SnFe2O4 NPs. XRD confirmed the spinel structure of NPs, while SEM and TEM analyses disclosed the size of NPs in the range of 15–50 nm and revealed the spherical shape of NPs. Moreover, energy dispersive X-ray spectroscopy (EDS) and BET analysis was carried out to estimate elemental composition and specific surface area, respectively. In vitro cytotoxicity of the synthesized NPs were studied on normal (HUVEC, HEK293) and cancerous (A549) human cell lines. HUVEC cells were resistant to SnFe2O4 NPs; while a significant decrease in the viability of HEK293 cells was observed when treated with higher concentrations of SnFe2O4 NPs. Furthermore, SnFe2O4 NPs induced dramatic cytotoxicity against A549 cells. For in vivo study, rats received SnFe2O4 NPs at dosages of 0, 0.1, 1, and 10 mg/kg. The 10 mg/kg dose increased serum blood urea nitrogen and creatinine compared to the controls (P < 0.05). The pathology showed necrosis in the liver, heart, and lungs, and the greatest damages were related to the kidneys. Overall, the in vivo and in vitro experiments showed that SnFe2O4 NPs at high doses had toxic effects on lung, liver and kidney cells without inducing toxicity to HUVECs. Further studies are warranted to fully elucidate the side effects of SnFe2O4 NPs for their application in theranostics.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
N. Cruz-González ◽  
O. Calzadilla ◽  
J. Roque ◽  
F. Chalé-Lara ◽  
J. K. Olarte ◽  
...  

In the last decade, the urgent need to environmental protection has promoted the development of new materials with potential applications to remediate air and polluted water. In this work, the effect of the TiO2 thin layer over MoS2 material in photocatalytic activity is reported. We prepared different heterostructures, using a combination of electrospinning, solvothermal, and spin-coating techniques. The properties of the samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRS), and X-ray photoelectron spectroscopy (XPS). The adsorption and photocatalytic activity were evaluated by discoloration of rhodamine B solution. The TiO2-MoS2/TiO2 heterostructure presented three optical absorption edges at 1.3 eV, 2.28 eV, and 3.23 eV. The high adsorption capacity of MoS2 was eliminated with the addition of TiO2 thin film. The samples show high photocatalytic activity in the visible-IR light spectrum.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 702 ◽  
Author(s):  
Juan Matmin ◽  
Irwan Affendi ◽  
Salizatul Ibrahim ◽  
Salasiah Endud

Nanostructured hematite materials for advanced applications are conventionally prepared with the presence of additives, tainting its purity with remnants of copolymer surfactants, active chelating molecules, stabilizing agents, or co-precipitating salts. Thus, preparing nanostructured hematite via additive-free and green synthesis methods remains a huge hurdle. This study presents an environmentally friendly and facile synthesis of spherical nanostructured hematite (Sp-HNP) using rice starch-assisted synthesis. The physicochemical properties of the Sp-HNP were investigated by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DR UV-Vis), and nitrogen adsorption–desorption analysis. The Sp-HNP showed a well-crystallized structure of pure rhombohedral phase, having a spherical-shaped morphology from 24 to 48 nm, and a surface area of 20.04 m2/g. Moreover, the Sp-HNP exhibited enhanced photocatalytic degradation of methylene blue dye, owing to the large surface-to-volume ratio. The current work has provided a sustainable synthesis route to produce spherical nanostructured hematite without the use of any hazardous agents or toxic additives, in agreement with the principles of green chemistry for the degradation of dye contaminant.


2019 ◽  
Vol 19 (1) ◽  
pp. 83-99 ◽  
Author(s):  
B. Yilmaz ◽  
E. T. Irmak ◽  
Y. Turhan ◽  
S. Doğan ◽  
M. Doğan ◽  
...  

AbstractThe aims of the present study were to synthesize the intercalated kaolinite samples with dimethylsulfoxide (DMSO), glutamic acid (GA), succinimide (SIM), cetylpyridiniumchloride (CPC), and hexadecyltrimethylammoniumchloride (HDTMA+); to characterize by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and to determine the hemocompatibility and the cytotoxic effects of the intercalated kaolinite nanoclays on human lymphocytes. It was found that the intercalation with DMSO did not cause any decrease in cell viability until its maximum concentration (500 µg/mL), however, the intercalation with SIM, CPC, and (HDTMA+) causd important decreases in lymphocyte viabilities. It was determined that no significant decrease was observed in protein content of the lymphocyte cells exposed to the kaolinite nanoclays except the ones intercalated with SIM. Furthermore, the pristine kaolinite nanoclays which were intercalated with DMSO, GA, and SIM exhibited high hemocompatibility and the nanoclays intercalated with CPC and (HDTMA+) were highly hemocompatibile for the amounts below 125 and 500 µg/mL, respectively. All the results of this work can serve for the human risk assesment of intercalated nanoclays.


2020 ◽  
Vol 13 (02) ◽  
pp. 2051004
Author(s):  
Jinyan Xiong ◽  
Wei Li ◽  
Kai Zhao ◽  
Weijie Li ◽  
Gang Cheng

Nanocrystallite aggregates have great potential in semiconductor-based photocatalysis toward environmental pollution removal. In this work, we reported the fabrication of broccoli-like zinc oxide nanoaggregates in the presence of beta-cyclodextrin in ethylene glycol-H2O medium. The composition and structure of the as-obtained ZnO nanoaggregates were characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. It was observed that the beta-cyclodextrin played an important role in the fabrication of such broccoli-like structure. A plausible formation mechanism was discussed on the basis of the controllable experiments. The photocatalytic performance of the products was studied through the photodegradation of rhodamine B under simulated sunlight irradiation. Compared to the spherical ZnO nanoaggregates and ZnO broken spheres, the broccoli-like ZnO exhibited superior photocatalytic efficiency. Based on the photocurrent and electrochemical measurement results, the higher separation efficiency of the photogenerated carriers and lower recombination efficiency of the photoinduced electron–hole pairs over the broccoli-like ZnO nanoaggregates contributed to their remarkable photocatalytic activity.


2012 ◽  
Vol 476-478 ◽  
pp. 2075-2078
Author(s):  
Li Li Liu ◽  
Fa Cheng Yi ◽  
Wei Cai

A biodegradable poly (glycerol-glycol-sebacate) terpolymer (PGGS) with different composition is prepared by a three-step method. The structure and properties of the PGGS terpolymers were characterized by means of attenuated total reflectance-Fourier transform infrared (ATR-FTIR), differential scanning calorimeter (DSC) and X-ray diffraction (XRD) methods. The experiment results indicate that the the composition of terpolymers have an obvious influence on the structure of PGGS terpolymers. The degradation rate increases with the increasing crosslink degree of PGGS.


Sign in / Sign up

Export Citation Format

Share Document