scholarly journals Cell surface Nucleolin represents a novel cellular target for neuroblastoma therapy

Author(s):  
Chiara Brignole ◽  
Veronica Bensa ◽  
Nuno A. Fonseca ◽  
Genny Del Zotto ◽  
Silvia Bruno ◽  
...  

Abstract Background Neuroblastoma (NB) represents the most frequent and aggressive form of extracranial solid tumor of infants. Nucleolin (NCL) is a protein overexpressed and partially localized on the cell surface of tumor cells of adult cancers. Little is known about NCL and pediatric tumors and nothing is reported about cell surface NCL and NB. Methods NB cell lines, Schwannian stroma-poor NB tumors and bone marrow (BM)-infiltrating NB cells were evaluated for the expression of cell surface NCL by Flow Cytometry, Imaging Flow Cytometry and Immunohistochemistry analyses. The cytotoxic activity of doxorubicin (DXR)-loaded nanocarriers decorated with the NCL-recognizing F3 peptide (T-DXR) was evaluated in terms of inhibition of NB cell proliferation and induction of cell death in vitro, whereas metastatic and orthotopic animal models of NB were used to examine their in vivo anti-tumor potential. Results NB cell lines, NB tumor cells (including patient-derived and Patient-Derived Xenografts-PDX) and 70% of BM-infiltrating NB cells show cell surface NCL expression. NCL staining was evident on both tumor and endothelial tumor cells in NB xenografts. F3 peptide-targeted nanoparticles, co-localizing with cell surface NCL, strongly associates with NB cells showing selective tumor cell internalization. T-DXR result significantly more effective, in terms of inhibition of cell proliferation and reduction of cell viability in vitro, and in terms of delay of tumor growth in all NB animal model tested, when compared to both control mice and those treated with the untargeted formulation. Conclusions Our findings demonstrate that NCL could represent an innovative therapeutic cellular target for NB.

2015 ◽  
Vol 33 (7_suppl) ◽  
pp. 205-205
Author(s):  
Thomas Nelius ◽  
Courtney Jarvis ◽  
Dalia Martinez-Marin ◽  
Stephanie Filleur

205 Background: Docetaxel/DTX and cabazitaxel/CBZ have shown promise in the treatment of metastatic Castration-Refractory Prostate Cancer/mCPRC however, comparative studies are missing. Toxicities of these drugs are significant, urging the need to modify taxane regimens. Recently, low-dose metronomic/LDM treatments using conventional chemotherapeutic drugs have shown benefits in CPRC in improving the effect of anti-angiogenic agents. Previously, we have demonstrated that LDM-DTX in combination with PEDF curbs significantly CRPC growth, limits metastases formation and prolongs survival in vivo. In this study, we intended to compare the cytotoxic effect of CBZ and DTX on CRPC cells in vitro and CL1 tumors in vivo. Methods: PC3, DU145 cell lines were from ATCC.CL1 cells were obtained from androgen-deprived LNCaP cells. Cell proliferation was assessed by crystal violet staining and cell cycle analyses. In vitro cytotoxicity assays were performed on CL1 cells/RAW264.7 macrophages co-cultures treated with PEDF and increasing doses of taxanes. For the in vivo studies, CL1 cells were engineered to stably express the DsRed Express protein +/- PEDF. PEDF anti-tumor effects were assessed on s.c. xenografts treated with DTX (5mg/kg ip ev. 4 day) as reference, CBZ (5mg/kg ip ev. 4 days, 1mg/kg for 10 days, 0.5mg/kg q.a.d. and 0.1mg/kg daily) or placebo. Results: CBZ limits cell proliferation with a greater efficacy than DTX in all CRPC cell lines tested. DU145 presented the largest difference. High doses of taxane blocked tumor cells in mitosis, whereas LDM increased the SubG1 population. This effect was significantly higher in DU145 cells treated with CBZ. In vivo, 5mg/kg CBZ delayed tumor growth more efficiently than 5mg/kg DTX. PEDF/5mg/kg CBZ markedly delayed tumor growth compared to all treatments. Finally, engulfment of tumor cells by macrophages was higher in combined treatments suggesting an inflammation-related process. Conclusions: CBZ is more efficient than DTX both in vitro and in vivo.The data also reinforce PEDF as a promising anti-neoplasic agent in combination with LDM taxane chemotherapies.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1594-1594
Author(s):  
Rong Fan ◽  
Hatice Satilmis ◽  
Niels Vandewalle ◽  
Elke De Bruyne ◽  
Eline Menu ◽  
...  

Abstract Introduction Immunotherapy has revolutionized cancer treatment and significantly affected the management of Multiple Myeloma (MM) patients. Unfortunately, these immunotherapeutic approaches are hampered by the presence of a suppressive bone marrow microenvironment including myeloid derived suppressor cells and tumor associated macrophages. Tasquinimod (TasQ), an immunomodulatory compound, is currently in phase Ib/IIa for relapsed/refractory MM patients (NCT04405167). TasQ blocks the interaction between S100A9 and its receptors, which is associated with reduced MDSC accumulation. In this study, we investigated TasQ-mediated direct and indirect effects on MM cell growth, bone disease and immunomodulation in vitro and in vivo using human myeloma cell lines and the immunocompetent 5TMM models. Material and methods In vitro, murine (5T33vt, 5TGM1) and human (JJN3, LP1, OPM2, and RPMI8226) MM cell lines were cultured at different concentrations of TasQ. Cell proliferation was assessed by BrdU staining using flow cytometry. C-Myc and pSTAT3 expression were analyzed by western blot. In vitro T cell proliferation experiments were performed using MACS-sorted CD11b + cells and CFSE-labeled T cells from naïve mice. Cells were cocultured for 72h in the presence of MM conditioned medium (5T33MMvt CM) with CD3/CD28 microbeads, followed by flow cytometry to assess T cell proliferation. For in vivo experiments, we used the 5T33 (aggressive) and 5TGM1 (moderate) MM models. On the second day after tumor cell injection, the mice were randomly assigned to the treatment group and the control group. The treatment group received 30 mg/kg of TasQ in drinking water for 35 days (5TGM1) and 21 days (5T33). Anti-tumor and immunomodulating effects were analyzed by flow cytometry (e.g. tumor cells, myeloid subsets, CD4/CD8 + T cells), qRT-PCR, western blot and serum ELISA (interferon-gamma). Effects on osteogenesis in the 5TGM1 model was investigated by Micro-CT. Statistical differences were assessed by Mann-Whitney U test and One-way ANOVA with p<0.05 considered as statistically significant. Results TasQ-treatment of murine and human myeloma cell lines (HMCL), at concentrations of 10-25uM, significantly reduced MM cell proliferation after 24h and 48h in vitro (n=3, p<0.05). In addition, a downregulation in c-Myc expression could be observed 6h after treatment of human MM cell lines (n=3). In vitro, TasQ significantly increased T cell proliferation in co-culture experiments with T cells and myeloid cells in 5T33MMvt CM (n=3, p<0.05). Using the immunocompetent 5TGM1 and 5T33MM model, we investigated direct and indirect anti-tumor effects of TasQ. We found that TasQ significantly reduced tumor load in the bone marrow of 5TGM1 (n=10/group, p=0.0012) and 5T33MM mice (n=10/group, p=0.0106) compared to vehicle-treated control mice. Using flow cytometry, we could not observe a difference in the percentage of CD4 + and CD8 + T cells. However, a significant upregulation in serum interferon-gamma could be observed in the 5T33MM mice (p=0.0284). While the percentage of CD11b + cells in the TasQ-treated group was significantly increased (p<0.05), the percentage of monocytic myeloid cells (CD11b +Ly6G -) was significantly reduced in both models (p<0.05). qRT-PCR results showed that the expression of IL-10 was downregulated in purified CD11b + myeloid cells (p<0.05). Consistent with the in vitro data, we observed a decrease in the protein expression of c-Myc in purified MM cells obtained from TasQ-treated mice compared to control mice. Micro-CT analysis of femurs demonstrated a significant increase in the percentage BV/TV (ratio of bone material volume over tissue volume) and trabeculae number (p<0.0001) in TasQ-treated 5TGM1 mice compared to untreated mice. Conclusion TasQ has pleiotropic effects on the MM cells and its surrounding bone marrow microenvironment. It affects MM cell growth by decreasing c-Myc expression. In addition, TasQ targets the immunosuppressive monocytic myeloid cell population and increases serum interferon-gamma levels, indicative for immune cell activation. Moreover, it stimulates osteogenesis in vivo. Taken together, all these data provide evidence for the therapeutic benefits of TasQ as an anti-MM therapy for patients. Disclosures Törngren: Active Biotech: Current Employment. Eriksson: Active Biotech: Current Employment. De Veirman: Active Biotech AB: Research Funding.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A876-A876
Author(s):  
Valentina Ferrari ◽  
Alessia Melacarne ◽  
Francesca Algieri ◽  
Maria Rescigno

BackgroundTumor cell clearance by cytotoxic T lymphocytes (CTL) requires expression of relevant antigens on HLA Class I molecules on the surface of tumor cells. Reduced levels of HLA Class I expression is a common method of immune escape, as it hampers tumor-specific CTLs’ ability to detect, recognize, and eliminate tumor cells. Recent data have shown that gut microbiota have a major impact on the clinical response to immune checkpoint inhibitors (ICIs), which could be due to a direct effect on malignant cells. Our hypothesis is that microbiota can influence the immune response by altering HLA Class I expression on tumor cells.MethodsTo investigate the ability of bacteria-based products to upregulate HLA Class I expression, we tested two different proprietary microbial derivatives (MDs) on multiple murine and human tumor primary and immortalized cell lines from various tissues, including: breast, myeloid, melanoma, and colon. We next examined if the change in HLA expression was functional by measuring activation levels and cytotoxic capacity of MART-1-specific CTLs following tumor cell treatment with MDs. Lastly, we administered MDs intra-peritoneally in 4T1-bearing Balb/c mice to sensitize 4T1 tumors to combination treatment with anti-PD-1 ICI.ResultsOur results to date show that in vitro treatment with MDs can upregulate surface HLA, albeit not uniformly across all tumor types, with breast and myeloid tumor cells showing the largest increase across the cell lines tested (figure 1). The MD-dependent HLA increase subsequently boosted CTL recognition of tumor cells without increasing background reactivity. The increased CTL degranulation correlated to the tumor cells’ increased surface HLA expression and was consistent whether the antigen was endogenous (5% increase, p<0.0001, figure 2A) or added exogenously (15%–30% increase, p<0.01 and p<0.0001 figure 2B). In combination with anti-PD-1 in vivo, MD treatment significantly abrogated tumor growth when compared to anti-PD-1 combined with the vehicle control (p<0.0001, figure 3A) and tumors harvested from MD-treated mice expressed higher levels of MHC Class I compared to the vehicle control cohort (p<0.05, figure 3B). Additionally, splenocytes from MD-treated mice showed increased recognition of 4T1 tumor cells when re-challenged in vitro (10% increase in CD8+41BB+ cells, p<0.0001, figure 3C).Abstract 835 Figure 1Class I surface expression after MD treatment. (A) breast (B) colon (C) melanoma and (D) myeloid human cancer cell lines were incubated with 5 (light bars) or 10 (dark bars) mg/mL MD#1, MD#2, and 10 mg/mL respective vehicle control (empty bars). (E) and (F) were treated with 10 mg/mL (dark bars) MD#1, MD#2, or respective vehicle controls (empty bars). After 48 hours, HLA Class I (A-D), H-2kb (E), and H-2kd (F) surface expression was measured by flow cytometry. Experiments repeated at least in duplicate. Statistical analysis by 2-way ANOVA, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.Abstract 835 Figure 2Antigen-specific CTL activation. Tumor cells were pre-treated for 48 hours with 10 mg/mL vehicle or MD, then washed and co-cultured for 5 hours with MART-1 specific CTL. A) primary HLA-A2+ melanoma cells that are negative (Mel12) or positive (Mel13) for the MART-1 antigen, and B) Thp1 loaded or not with MART-1 peptide. CD8+CD107a+ cells measured by flow cytometry. Experiments repeated in triplicate, statistical analysis by two-way ANOVA.Abstract 835 Figure 3In vivo treatment with MD. Fifteen 6-week-old Balb/c mice were subcutaneously inoculated with 1.5 × 1054T1 tumor cells and divided into 3 treatment groups on day 3 based on equivalent tumor size. Mice were treated with 250 µg microbial derivatives (MD#1) or vehicle control (vehicle #1) in combination with anti-PD-1 (200 µg; clone 29F.1A12) starting on day 3 and continued every other day for a total of 4 injections (black arrows). (A) Tumor measurements were taken every other day using a caliper and volume calculated using the formula: tumor volume = (length x width2) ÷ 2 (B) 2 × 105 splenocytes were co-cultured 1:1 with 4T1 tumor cells in vitro and T cell activation (percent CD8+41BB+) was measured by flow cytometry. Experiment repeated in duplicate, statistical analysis by 2-way ANOVA (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).ConclusionsOur results thus far confirm that our proprietary MDs can increase HLA expression on tumor cells, and that this can lead to increased recognition by antigen-specific CTL both in vitro and in vivo. This suggests that MDs could be explored in combination with ICIs to enhance clinical anti-cancer immune responses.


2021 ◽  
Vol 3 (Supplement_3) ◽  
pp. iii3-iii3
Author(s):  
Jiwei Wang ◽  
Emma Rigg ◽  
Taral R Lunavat ◽  
Wenjing Zhou ◽  
Zichao Feng ◽  
...  

Abstract Background Melanoma has the highest propensity of any cancer to metastasize to the brain, with late-stage patients developing brain metastasis (MBM) in 40% of cases. Survival of patients with MBM is around 8 months with current therapies, illustrating the need for new treatments. MBM development is likely caused by molecular interactions between tumor cells and the brain, constituting the brain metastatic niche. miRNAs delivered by exosomes released by the primary tumor cells may play a role in niche establishment, yet the mechanisms are poorly understood. Here, the aim was to identify miRNAs released by exosomes from melanomas, which may be important in niche establishment and MBM progression. Materials and Methods miRNAs from exosomes collected from human astrocytes, melanocytes, and MBM cell lines were profiled to determine differential expression. Functional in vitro validation was performed by cell growth and migration assays, cytokine arrays, qPCR and Western blots. Functional in vivo studies were performed after miR knockdown in MBM cell lines. An in silico docking study was performed to determine drugs that potentially inhibit transcription of miR-146a to impede MBM development. Results miR-146a was the most upregulated miRNA in exosomes from MBM cells and was highly expressed in human and animal MBM samples. miR-146a mimics activated human astrocytes, shown by increased proliferation and migration, elevated expression of GFAP in vitro and in mouse brain tumor samples, and increased cytokine production. In animal studies, knockdown of miR-146a in MBM cells injected intracardially into mice reduced BM burden and increased animal survival. Based on the docking studies, deserpidine was found to be an effective inhibitor of MBM growth in vitro and in vivo. Conclusions MiR-146a may play an important role in MBM development, and deserpidine is a promising candidate for clinical use.


2021 ◽  
Author(s):  
Wentao Li ◽  
Ismatullah Soufiany ◽  
Xiao Lyu ◽  
Lin Zhao ◽  
Chenfei Lu ◽  
...  

Abstract Background: Mounting evidences have shown the importance of lncRNAs in tumorigenesis and cancer progression. LBX2-AS1 is an oncogenic lncRNA that has been found abnormally expressed in gastric cancer and lung cancer samples. Nevertheless, the biological function of LBX2-AS1 in glioblastoma (GBM) and potential molecular mechanism are largely unclear. Methods: Relative levels of LBX2-AS1 in GBM samples and cell lines were detected by qRT-PCR and FISH. In vivo and in vitro regulatory effects of LBX2-AS1 on cell proliferation, epithelial-to-mesenchymal transition (EMT) and angiogenesis in GBM were examined through xenograft models and functional experiments, respectively. The interaction between Sp1 and LBX2-AS1 was assessed by ChIP. Through bioinformatic analyses, dual-luciferase reporter assay, RIP and Western blot, the regulation of LBX2-AS1 and miR-491-5p on the target gene leukemia Inhibitory factor (LIF) was identified. Results: LBX2-AS1 was upregulated in GBM samples and cell lines, and its transcription was promoted by binding to the transcription factor Sp1. As a lncRNA mainly distributed in the cytoplasm, LBX2-AS1 upregulated LIF, and activated the LIF/STAT3 signaling by exerting the miRNA sponge effect on miR-491-5p, thus promoting cell proliferation, EMT and angiogenesis in GBM. Besides, LBX2-AS1 was unfavorable to the progression of glioma and the survival. Conclusion: Upregulated by Sp1, LBX2-AS1 promotes the progression of GBM by targeting the miR-491-5p/LIF axis. It is suggested that LBX2-AS1 may be a novel diagnostic biomarker and therapeutic target of GBM.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chao Hu ◽  
Xiaobin Zhu ◽  
Taogen Zhang ◽  
Zhouming Deng ◽  
Yuanlong Xie ◽  
...  

Introduction. Osteosarcoma is a malignant tumor associated with high mortality rates due to the toxic side effects of current therapeutic methods. Tanshinone IIA can inhibit cell proliferation and promote apoptosis in vitro, but the exact mechanism is still unknown. The aims of this study are to explore the antiosteosarcoma effect of tanshinone IIA via Src kinase and demonstrate the mechanism of this effect. Materials and Methods. Osteosarcoma MG-63 and U2-OS cell lines were stable transfections with Src-shRNA. Then, the antiosteosarcoma effect of tanshinone IIA was tested in vitro. The protein expression levels of Src, p-Src, p-ERK1/2, and p-AKt were detected by Western blot and RT-PCR. CCK-8 assay and BrdU immunofluorescence assay were used to detect cell proliferation. Transwell assay, cell scratch assay, and flow cytometry were used to detect cell invasion, migration, and cell cycle. Tumor-bearing nude mice with osteosarcoma were constructed. The effect of tanshinone IIA was detected by tumor HE staining, tumor inhibition rate, incidence of lung metastasis, and X-ray. Results. The oncogene role of Src kinase in osteosarcoma is reflected in promoting cell proliferation, invasion, and migration and in inhibiting apoptosis. However, Src has different effects on cell proliferation, apoptosis, and cell cycle regulation among cell lines. At a cellular level, the antiosteosarcoma effect of tanshinone IIA is mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. At the animal level, tanshinone IIA played a role in resisting osteosarcoma formation by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. Conclusion. Tanshinone IIA plays an antiosteosarcoma role in vitro and in vivo and inhibits the progression of osteosarcoma mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0246197
Author(s):  
Jorge Marquez ◽  
Jianping Dong ◽  
Chun Dong ◽  
Changsheng Tian ◽  
Ginette Serrero

Antibody-drug conjugates (ADC) are effective antibody-based therapeutics for hematopoietic and lymphoid tumors. However, there is need to identify new targets for ADCs, particularly for solid tumors and cancers with unmet needs. From a hybridoma library developed against cancer cells, we selected the mouse monoclonal antibody 33B7, which was able to bind to, and internalize, cancer cell lines. This antibody was used for identification of the target by immunoprecipitation and mass spectrometric analysis, followed by target validation. After target validation, 33B7 binding and target positivity were tested by flow cytometry and western blot analysis in several cancer cell lines. The ability of 33B7 conjugated to saporin to inhibit in vitro proliferation of PTFRN positive cell lines was investigated, as well as the 33B7 ADC in vivo effect on tumor growth in athymic mice. All flow cytometry and in vitro internalization assays were analyzed for statistical significance using a Welsh’s T-test. Animal studies were analyzed using Two-Way Analysis of Variance (ANOVA) utilizing post-hoc Bonferroni analysis, and/or Mixed Effects analysis. The 33B7 cell surface target was identified as Prostaglandin F2 Receptor Negative Regulator (PTGFRN), a transmembrane protein in the Tetraspanin family. This target was confirmed by showing that PTGFRN-expressing cells bound and internalized 33B7, compared to PTGFRN negative cells. Cells able to bind 33B7 were PTGFRN-positive by Western blot analysis. In vitro treatment PTGFRN-positive cancer cell lines with the 33B7-saporin ADC inhibited their proliferation in a dose-dependent fashion. 33B7 conjugated to saporin was also able to block tumor growth in vivo in mouse xenografts when compared to a control ADC. These findings show that screening antibody libraries for internalizing antibodies in cancer cell lines is a good approach to identify new cancer targets for ADC development. These results suggest PTGFRN is a possible therapeutic target via antibody-based approach for certain cancers.


1997 ◽  
Vol 186 (12) ◽  
pp. 1985-1996 ◽  
Author(s):  
Qin Yu ◽  
Bryan P. Toole ◽  
Ivan Stamenkovic

To understand how the hyaluronan receptor CD44 regulates tumor metastasis, the murine mammary carcinoma TA3/St, which constitutively expresses cell surface CD44, was transfected with cDNAs encoding soluble isoforms of CD44 and the transfectants (TA3sCD44) were compared with parental cells (transfected with expression vector only) for growth in vivo and in vitro. Local release of soluble CD44 by the transfectants inhibited the ability of endogenous cell surface CD44 to bind and internalize hyaluronan and to mediate TA3 cell invasion of hyaluronan-producing cell monolayers. Mice intravenously injected with parental TA3/St cells developed massive pulmonary metastases within 21–28 d, whereas animals injected with TA3sCD44 cells developed few or no tumors. Tracing of labeled parental and transfectant tumor cells revealed that both cell types initially adhered to pulmonary endothelium and penetrated the interstitial stroma. However, although parental cells were dividing and forming clusters within lung tissue 48 h following injection, &gt;80% of TA3sCD44 cells underwent apoptosis. Although sCD44 transfectants displayed a marked reduction in their ability to internalize and degrade hyaluronan, they elicited abundant local hyaluronan production within invaded lung tissue, comparable to that induced by parental cells. These observations provide direct evidence that cell surface CD44 function promotes tumor cell survival in invaded tissue and that its suppression can induce apoptosis of the invading tumor cells, possibly as a result of impairing their ability to penetrate the host tissue hyaluronan barrier.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii57-ii57
Author(s):  
J Wang ◽  
E K Rigg ◽  
T R Lunavat ◽  
W Zhou ◽  
Z Feng ◽  
...  

Abstract BACKGROUND Melanoma has the highest propensity of any cancer to metastasize to the brain, with late-stage patients developing brain metastasis (MBM) in 40% of cases. Survival of patients with MBM is around 8 months with current therapies, illustrating the need for new treatments. MBM development is likely caused by molecular interactions between tumor cells and the brain, constituting the brain metastatic niche. miRNAs delivered by exosomes released from the primary tumor cells may play a role in niche establishment, yet the mechanisms are poorly understood. Here, the aim was to identify miRNAs released by exosomes from melanomas, which may be important in niche establishment and MBM progression. MATERIAL AND METHODS miRNAs in exosomes collected from human astrocytes, melanocytes, and MBM cell lines were profiled to determine differential expression. Functional in vitro validation was performed by cell growth and migration assays, cytokine arrays, qPCR and Western blots. Functional in vivo studies were performed after miR knockdown in MBM cell lines. An in silico docking study was performed to determine drugs that potentially inhibit transcription of miR-146a to impede MBM development. RESULTS miR-146a was the most upregulated miRNA in exosomes from MBM cells and was highly expressed in human and animal MBM samples. miR-146a mimics activated human astrocytes, shown by increased proliferation and migration, elevated expression of GFAP in vitro and in mouse brain tumor samples, and increased cytokine production. In animal studies, knockdown of miR-146 in MBM cells injected intracardially into mice reduced BM burden and increased animal survival. Based on the docking studies, deserpidine was found to be an effective inhibitor of MBM growth in vitro and in vivo. CONCLUSION miR-146a may play an important role in MBM development, and deserpidine is a promising candidate for clinical use.


Sign in / Sign up

Export Citation Format

Share Document