scholarly journals Improved cold tolerance in switchgrass by a novel CCCH-type zinc finger transcription factor gene, PvC3H72, associated with ICE1–CBF–COR regulon and ABA-responsive genes

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Zheni Xie ◽  
Wenjing Lin ◽  
Guohui Yu ◽  
Qiang Cheng ◽  
Bin Xu ◽  
...  

Abstract Background Switchgrass (Panicum virgatum) is a warm-season perennial grass. Improving its cold tolerance is important for its sustainable production in cooler regions. Through genome-wide bioinformatic analysis of switchgrass Zinc finger-CCCH genes (PvC3Hs), we found that several PvC3Hs, including PvC3H72, might play regulatory roles in plant cold tolerance. The objectives of this study were to characterize PvC3H72 using reverse genetics approach and to understand its functional role in cold signal transduction and cold tolerance in switchgrass. Results PvC3H72 is an intronless gene encoding a transcriptional activation factor. The expression of PvC3H72 was rapidly and highly induced by cold stress. Transgenic switchgrass with over-expressed PvC3H72 driven under maize ubiquitin promoter showed significantly improved chilling tolerance at 4 °C as demonstrated by less electrolyte leakage and higher relative water content than wild-type (WT) plants, as well as significantly higher survival rate after freezing treatment at − 5 °C. Improved cold tolerance of PvC3H72 transgenic lines was associated with significantly up-regulated expression of ICE1–CBF–COR regulon and ABA-responsive genes during cold treatment. Conclusions PvC3H72 was the first characterized switchgrass cold-tolerance gene and also the only Znf-CCCH family gene known as a transcription factor in plant cold tolerance. PvC3H72 was an added signaling component in plant cold tolerance associated with regulation of ICE1–CBF–COR regulon and ABA-responsive genes. Knowledge gained in this study not only added another acting component into plant cold-tolerance mechanism, but also be of high value for genetic improvement of cold tolerance in switchgrass as well as other warm-season grasses.

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1845
Author(s):  
Santosh Nayak ◽  
Hem Bhandari ◽  
Carl Sams ◽  
Virginia Sykes ◽  
Haileab Hilafu ◽  
...  

Switchgrass (Panicum virgatum L.) is a warm-season, perennial grass valued as a promising candidate species for bioenergy feedstock production. Biomass yield is the most important trait for any bioenergy feedstock. This study was focused on understanding the genetics underlying biomass yield and feedstock quality traits in a “Kanlow” population. The objectives of this study were to (i) assess genetic variation (ii) estimate the narrow sense heritability, and (iii) predict genetic gain per cycle of selection for biomass yield and the components of lignocelluloses. Fifty-four Kanlow half-sib (KHS) families along with Kanlow check were planted in a randomized complete block design with three replications at two locations in Tennessee: Knoxville and Crossville. The data were recorded for two consecutive years: 2013 and 2014. The result showed a significant genetic variation for biomass yield (p < 0.05), hemicellulose concentration (p < 0.05), and lignin concentration (p < 0.01). The narrow sense heritability estimates for biomass yield was very low (0.10), indicating a possible challenge to improve this trait. A genetic gain of 16.5% is predicted for biomass yield in each cycle of selection by recombining parental clones of 10% of superior progenies.


2012 ◽  
Vol 10 (7) ◽  
pp. 783-791 ◽  
Author(s):  
Manju Gupta ◽  
Russell C. DeKelver ◽  
Asha Palta ◽  
Carla Clifford ◽  
Sunita Gopalan ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yong-Mei Jin ◽  
Rihua Piao ◽  
Yong-Feng Yan ◽  
Mojun Chen ◽  
Ling Wang ◽  
...  

Cold stress is one of the most important abiotic stresses in rice. C2H2zinc finger proteins play important roles in response to abiotic stresses in plants. In the present study, we isolated and functionally characterized a new C2H2zinc finger protein transcription factorOsCTZFP8in rice.OsCTZFP8encodes a C2H2zinc finger protein, which contains a typical zinc finger motif, as well as a potential nuclear localization signal (NLS) and a leucine-rich region (L-box). Expression ofOsCTZFP8was differentially induced by several abiotic stresses and was strongly induced by cold stress. Subcellular localization assay and yeast one-hybrid analysis revealed that OsCTZFP8 was a nuclear protein and has transactivation activity. To characterize the function ofOsCTZFP8in rice, the full-length cDNA ofOsCTZFP8was isolated and transgenic rice with overexpression ofOsCTZFP8driven by the maize ubiquitin promoter was generated usingAgrobacterium-mediated transformation. Among 46 independent transgenic lines, 6 single-copy homozygous overexpressing lines were selected by Southern blot analysis and Basta resistance segregation assay in both T1and T2generations. Transgenic rice overexpressingOsCTZFP8exhibited cold tolerant phenotypes with significantly higher pollen fertilities and seed setting rates than nontransgenic control plants. In addition, yield per plant ofOsCTZFP8-expressing lines was significantly (p<0.01) higher than that of nontransgenic control plants under cold treatments. These results demonstrate thatOsCTZFP8was a C2H2zinc finger transcription factor that plays an important role in cold tolerance in rice.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1092
Author(s):  
Madeline W. Oravec ◽  
Michael J. Havey

Cucumber (Cucumis sativus L.) is a warm-season crop that is sensitive to chilling temperatures and a maternally inherited cold tolerance exists in the heirloom cultivar ‘Chipper’ (CH). Because the organelles of cucumber show differential transmission (maternal for chloroplast and paternal for mitochondrion), this cold tolerance is hypothesized to be chloroplast-associated. The goal of this research was to characterize the cold tolerant phenotype from CH and determine its genetic basis. Doubled haploid (DH) lines were produced from CH and cold susceptible cucumbers, reciprocal hybrids with identical nuclear genotypes were produced, and plants were subjected to cold treatments under lights at 4 °C for 5.5 h. Hybrid plants with CH as the maternal parent had significantly higher fresh and dry weights 14 days after cold treatment compared to the reciprocal hybrid, revealing an enhanced cold recovery phenotype maternally conferred by CH. Results from analyses of the nuclear transcriptome and reactive oxygen species (ROS) between reciprocal hybrids were consistent with the cold recovery phenotype. Sequencing of the chloroplast genome and transcriptome of the DH parents and reciprocal hybrids, respectively, revealed one maternally transmitted non-synonymous single nucleotide polymorphism (SNP) in the chloroplast F1FO-ATP synthase (CF1FO-ATPase) beta-subunit gene (atpB) of CH which confers an amino acid change from threonine to arginine. Protein modeling revealed that this change is located at the interface of the alpha- and beta-subunits in the CF1FO-ATPase complex. Polymorphisms in the CF1FO-ATPase complex have been associated with stress tolerances in other plants, and selection for or creation of polymorphic beta-subunit proteins by chloroplast transformation or gene editing could condition improved recovery from cold stress in plants.


2000 ◽  
Vol 14 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Maura Papi ◽  
Sabrina Sabatini ◽  
David Bouchez ◽  
Christine Camilleri ◽  
Paolo Costantino ◽  
...  

We describe here the Arabidopsis gene DAG1, encoding a zinc finger transcription factor of the Dof family, and show that it is involved in the control of seed germination. By a reverse genetics approach, we isolated an Arabidopsis mutant line with one T-DNA insertion in DAG1. Seeds from homozygous knockoutdag1-1 plants do not develop dormancy and germinate also in the absence of light. Segregation analysis indicates that the effect of the mutation is maternal. Accordingly, in situ mRNA hybridizations reveal expression of DAG1 in the vascular tissue of the flower and maturing fruit but not in the seed.


2022 ◽  
Vol 23 (2) ◽  
pp. 606
Author(s):  
Yongbo Hong ◽  
Hui Wang ◽  
Yizhou Gao ◽  
Yan Bi ◽  
Xiaohui Xiong ◽  
...  

We previously showed that overexpression of the rice ERF transcription factor gene OsBIERF3 in tobacco increased resistance against different pathogens. Here, we report the function of OsBIERF3 in rice immunity and abiotic stress tolerance. Expression of OsBIERF3 was induced by Xanthomonas oryzae pv. oryzae, hormones (e.g., salicylic acid, methyl jasmonate, 1-aminocyclopropane-1-carboxylic acid, and abscisic acid), and abiotic stress (e.g., drought, salt and cold stress). OsBIERF3 has transcriptional activation activity that depends on its C-terminal region. The OsBIERF3-overexpressing (OsBIERF3-OE) plants exhibited increased resistance while OsBIERF3-suppressed (OsBIERF3-Ri) plants displayed decreased resistance to Magnaporthe oryzae and X. oryzae pv. oryzae. A set of genes including those for PRs and MAPK kinases were up-regulated in OsBIERF3-OE plants. Cell wall biosynthetic enzyme genes were up-regulated in OsBIERF3-OE plants but down-regulated in OsBIERF3-Ri plants; accordingly, cell walls became thicker in OsBIERF3-OE plants but thinner in OsBIERF3-Ri plants than WT plants. The OsBIERF3-OE plants attenuated while OsBIERF3-Ri plants enhanced cold tolerance, accompanied by altered expression of cold-responsive genes and proline accumulation. Exogenous abscisic acid and 1-aminocyclopropane-1-carboxylic acid, a precursor of ethylene biosynthesis, restored the attenuated cold tolerance in OsBIERF3-OE plants while exogenous AgNO3, an inhibitor of ethylene action, significantly suppressed the enhanced cold tolerance in OsBIERF3-Ri plants. These data demonstrate that OsBIERF3 positively contributes to immunity against M. oryzae and X. oryzae pv. oryzae but negatively regulates cold stress tolerance in rice.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jianli Wang ◽  
Zhenying Wu ◽  
Zhongbao Shen ◽  
Zetao Bai ◽  
Peng Zhong ◽  
...  

Auxin response factors (ARFs) have been reported to play vital roles during plant growth and development. In order to reveal specific functions related to vegetative organs in grasses, an in-depth study of the ARF gene family was carried out in switchgrass (Panicum virgatum L.), a warm-season C4 perennial grass that is mostly used as bioenergy and animal feedstock. A total of 47 putative ARF genes (PvARFs) were identified in the switchgrass genome (2n = 4x = 36), 42 of which were anchored to the seven pairs of chromosomes and found to be unevenly distributed. Sixteen PvARFs were predicted to be potential targets of small RNAs (microRNA160 and 167). Phylogenetically speaking, PvARFs were divided into seven distinct subgroups based on the phylogeny, exon/intron arrangement, and conserved motif distribution. Moreover, 15 pairs of PvARFs have different temporal-spatial expression profiles in vegetative organs (2nd, 3rd, and 4th internode and leaves), which implies that different PvARFs have specific functions in switchgrass growth and development. In addition, at least 14 pairs of PvARFs respond to naphthylacetic acid (NAA) treatment, which might be helpful for us to study on auxin response in switchgrass. The comprehensive analysis, described here, will facilitate the future functional analysis of ARF genes in grasses.


1993 ◽  
Vol 13 (8) ◽  
pp. 4776-4783 ◽  
Author(s):  
M B Rollins ◽  
S Del Rio ◽  
A L Galey ◽  
D R Setzer ◽  
M T Andrews

The Xenopus 5S RNA gene-specific transcription factor IIIA (TFIIIA) has nine consecutive Cys2His2 zinc finger motifs. Studies were conducted in vivo to determine the contribution of each of the nine zinc fingers to the activity of TFIIIA in living cells. Nine separate TFIIIA mutants were expressed in Xenopus embryos following microinjection of their respective in vitro-derived mRNAs. Each mutant contained a single histidine-to-asparagine substitution in the third zinc ligand position of an individual zinc finger. These mutations result in structural disruption of the mutated finger with little or no effect on the other fingers. The activity of mutant proteins in vivo was assessed by measuring transcriptional activation of the endogenous 5S RNA genes. Mutants containing a substitution in zinc finger 1, 2, or 3 activate 5S RNA genes at a level which is reduced relative to that in embryos injected with the message for wild-type TFIIIA. Proteins with a histidine-to-asparagine substitution in zinc finger 5 or 7 activate 5S RNA genes at a level that is roughly equivalent to that of the wild-type protein. Zinc fingers 8 and 9 appear to be critical for the normal function of TFIIIA, since mutations in these fingers result in little or no activation of the endogenous 5S RNA genes. Surprisingly, proteins with a mutation in zinc finger 4 or 6 stimulate 5S RNA transcription at a level that is significantly higher than that mediated by similar concentrations of wild-type TFIIIA. Differences in the amount of newly synthesized 5S RNA in embryos containing the various mutant forms of TFIIIA result from differences in the relative number and/or activity of transcription complexes assembled on the endogenous 5S RNA genes and, in the case of the finger 4 and finger 6 mutants, result from increased transcriptional activation of the normally inactive oocyte-type 5S RNA genes. The remarkably high activity of the finger 6 mutant can be reproduced in vitro when transcription is carried out in the presence of 5S RNA. Disruption of zinc finger 6 results in a form of TFIIIA that exhibits reduced susceptibility to feedback inhibition by 5S RNA and therefore increases the availability of the transcription factor for transcription complex formation.


2019 ◽  
Author(s):  
Yongfeng Wang ◽  
Kunliang Xie ◽  
Fengli Sun ◽  
Chao Zhang ◽  
Shudong Liu ◽  
...  

AbstractSwitchgrass (Panicum Virgatum L.) is a warm-season perennial grass native to North America, it was used as forage and vegetative filter strips in early days, and have developed into a bioenergy crop in recent years. In this study, we found that the switchgrass cultivar ‘Alamo’ at elongation stage 4 have developed inflorescences about 1 cm in length, and in vitro incubation of the shoot apexes harboring inflorescences on Murashige and Skoog’s basal medium supplemented with 3 mg/L 6-benzylaminopurine generated multiple shoot clumps. Anatomical study showed that some of the regenerated shoots originated from axillary buds on the explants, some of them originated from adventurous buds and some of them originated from young florets. Further study of shoots originated from young florets found that the floral organs degenerated or developed into leaf-like organs, and the flower terminal transformed into a vegetative shoot apical meristem, that’s to say these shoots arise from flower reversion. In vitro induction of floral reversion provided a novel protocol to manipulate flower development in switchgrass, which might contribute a fundamental for flower development study in switchgrass and other plants.


Sign in / Sign up

Export Citation Format

Share Document