scholarly journals Recombinant bacteriophage LysKB317 endolysin mitigates Lactobacillus infection of corn mash fermentations

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Shao-Yeh Lu ◽  
Kenneth M. Bischoff ◽  
Joseph O. Rich ◽  
Siqing Liu ◽  
Christopher D. Skory

Abstract Background Commercial ethanol fermentation facilities traditionally rely on antibiotics for bacterial contamination control. Here we demonstrate an alternative approach to treat contamination using a novel peptidoglycan hydrolase (LysKB317) isolated from a bacteriophage, EcoSau. This endolysin was specially selected against Lactobacillus strains that were isolated as contaminants from a fuel ethanol plant. The LysKB317 gene was recombinantly expressed in Escherichia coli as a 33 kDa purified enzyme. Results In turbidity reduction assays, the recombinant enzyme was subjected to a panel of 32 bacterial strains and was active against 28 bacterial strains representing 1 species of Acetobacter, 8 species of Lactobacillus, 1 species of Pediococcus, 3 species of Streptococcus, and 1 species of Weissella. The activity of LysKB317 was optimal around pH 6, but it has broad activity and stability from pH 4.5–7.5 up to at least 48 h. Maximum activity was observed at 50 °C up to at least 72 h. In addition, LysKB317 was stable in 30% ethanol up to at least 72 h. In experimentally infected corn mash fermentations, 1 µM endolysin reduced bacterial load by 3-log fold change, while 0.01 µM reduced bacteria by 2-log fold change. Concentration of fermentation products (ethanol, residual glucose, lactic acid, and acetic acids) for infected cultures treated with ≥ 0.01 µM LysKB317 was similar to uncontaminated controls. Conclusion Exogenously added LysKB317 endolysin is functional in conditions typically found in fuel ethanol fermentations tanks and may be developed as an alternative to antibiotics for contamination control during fuel ethanol fermentations.

2020 ◽  
Author(s):  
Shao- Yeh Lu ◽  
Kenneth M. Bischoff ◽  
Joseph O. Rich ◽  
Siqing Liu ◽  
Christopher D. Skory

Abstract Background Commercial ethanol fermentation facilities traditionally rely on antibiotics for bacterial contamination control. Here we demonstrate an alternative approach to treat contamination using a novel peptidoglycan hydrolase (LysKB317) isolated from a bacteriophage, EcoSau. This endolysin was specially selected against Lactobacillus strains that were isolated as contaminants from a fuel ethanol plant. The LysKB317 gene was recombinantly expressed in Escherichia coli as a 33 kDa purified enzyme. Results In turbidity reduction assays, the recombinant enzyme was subjected to a panel of 32 bacterial strains and was active against 28 bacterial strains representing one species of Acetobacter, eight species of Lactobacillus, one species of Pediococcus, three species of Streptococcus, and one species of Weissella. The activity of LysKB317 was optimal around pH 6, but it has broad activity and stability from pH 4.5 – 7.5 up to at least 48 h. Maximum activity was observed at 50°C up to at least 72 h. In addition, LysKB317 was stable in 30% ethanol up to at least 72 h. In experimentally infected corn mash fermentations, 1 µM endolysin reduced bacterial load by 4-log fold change, while 0.01 µM reduced bacteria by 2-log fold change. Concentration of fermentation products (ethanol, residual glucose, lactic acid, and acetic acids) for infected cultures treated with ≥ 0.01 µM LysKB317 were similar to uncontaminated controls. Conclusion Exogenously added LysKB317 endolysin is functional in conditions typically found in fuel ethanol fermentations tanks and may be developed as an alternative to antibiotics for contamination control during fuel ethanol fermentations.


2020 ◽  
Author(s):  
Shao- Yeh Lu ◽  
Kenneth M. Bischoff ◽  
Joseph O. Rich ◽  
Siqing Liu ◽  
Christopher D. Skory

Abstract Background Commercial ethanol fermentation facilities traditionally rely on antibiotics for bacterial contamination control. Here we demonstrate an alternative approach to treat contamination using a novel peptidoglycan hydrolase (LysKB317) isolated from a bacteriophage, EcoSau. This endolysin was specially selected against Lactobacillus strains that were isolated as contaminants from a fuel ethanol plant. The LysKB317 gene was recombinantly expressed in Escherichia coli as a 33 kDa purified enzyme. Results In turbidity reduction assays, the recombinant enzyme was subjected to a panel of 32 bacterial strains and was active against 28 bacterial strains representing one species of Acetobacter, eight species of Lactobacillus, one species of Pediococcus, three species of Streptococcus, and one species of Weissella. The activity of LysKB317 was optimal around pH 6, but it has broad activity and stability from pH 4.5 – 7.5 up to at least 48 h. Maximum activity was observed at 50°C up to at least 72 hrs. In addition, LysKB317 was stable in 30% ethanol up to at least 72 hrs. In experimentally infected corn mash fermentations, 1 µM endolysin reduced bacterial load by 3-log fold change, while 0.01 µM reduced bacteria by 2-log fold change. Concentration of fermentation products (ethanol, residual glucose, lactic acid, and acetic acids) for infected cultures treated with ≥ 0.01 µM LysKB317 were similar to uncontaminated controls. Conclusion Exogenously added LysKB317 endolysin is functional in conditions typically found in fuel ethanol fermentations tanks and may be developed as an alternative to antibiotics for contamination control during fuel ethanol fermentations.


2016 ◽  
Vol 5 (12) ◽  
pp. 5138
Author(s):  
Shyamji Shukla* ◽  
Priyanka Soni ◽  
Harish K. Kewat

There is an alarming increase in the problem of resistance towards antibiotics amongst most of the pathogenic bacterial strains in recent years. This has drawn the attention of researchers around the world to search for novel and eco-friendly antibacterial compounds. Several biological sources have been explored in this respect but medicinal plants have taken a centre stage out of all. Plants have been known as a reservoir of number of bioactive compounds specially the antibacterial ones since time immemorial. Therefore, the present investigation was undertaken to analyze the antibacterial potential of the medicinal plant Achyranthes aspera. This study revealed that highest antibacterial activity was observed in the methanolic extract of stem against almost all test Bacteria. It showed maximum activity against E.coli (30 mm), followed by S. aureus (28 mm), Enterococcus sp.(25mm), Salmonella typhi ( 20 mm) and least activity was recorded in same extract against K.pneumoniae (6 mm). Four phytochemicals were screened in various solvent extracts. They are alkaloid, flavonoids, saponins and tannins.


2018 ◽  
Vol 315 (2) ◽  
pp. G159-G170 ◽  
Author(s):  
Myrthe S. Gilbert ◽  
Noortje Ijssennagger ◽  
Arie K. Kies ◽  
Saskia W. C. van Mil

The amount of dietary protein is associated with intestinal disease in different vertebrate species. In humans, this is exemplified by the association between high-protein intake and fermentation metabolite concentrations in patients with inflammatory bowel disease. In production animals, dietary protein intake is associated with postweaning diarrhea in piglets and with the occurrence of wet litter in poultry. The underlying mechanisms by which dietary protein contributes to intestinal problems remain largely unknown. Fermentation of undigested protein in the hindgut results in formation of fermentation products including short-chain fatty acids, branched-chain fatty acids, ammonia, phenolic and indolic compounds, biogenic amines, hydrogen sulfide, and nitric oxide. Here, we review the mechanisms by which these metabolites may cause intestinal disease. Studies addressing how different metabolites induce epithelial damage rely mainly on cell culture studies and occasionally on mice or rat models. Often, contrasting results were reported. The direct relevance of such studies for human, pig, and poultry gut health is therefore questionable and does not suffice for the development of interventions to improve gut health. We discuss a roadmap to improve our understanding of gut metabolites and microbial species associated with intestinal health in humans and production animals and to determine whether these metabolite/bacterial networks cause epithelial damage. The outcomes of these studies will dictate proof-of-principle studies to eliminate specific metabolites and or bacterial strains and will provide the basis for interventions aiming to improve gut health.


2019 ◽  
Vol 82 (10) ◽  
pp. 1677-1682 ◽  
Author(s):  
BENJAMIN ZWIRZITZ ◽  
STEFANIE U. WETZELS ◽  
ISABEL RABANSER ◽  
SARAH THALGUTER ◽  
MONIKA DZIECIOL ◽  
...  

ABSTRACT Traditionally, the microbiological status of meat is determined by culture-based techniques, although many bacteria are not able to grow on conventional media. The aim of this study was to obtain quantitative data on total bacterial cell equivalents, as well as taxa-specific abundances, on carcass surfaces during pig slaughter using quantitative real-time PCR. We evaluated microbial contamination patterns of total bacteria, Campylobacter, Escherichia coli, Lactobacillus group, Listeria monocytogenes, Salmonella, and Pseudomonas species throughout slaughtering and on different carcass areas. In addition, we compared contamination levels of breeding sow carcasses with fattening pig carcasses, and we assessed the efficacy of carcass polishing machines under two water amount conditions. Our results demonstrate that relevant meat-spoilage organisms show similar contamination patterns to total bacteria. The highest bacterial load was detected in the stunning chute (4.08 × 105 bacterial cell equivalents per cm2) but was reduced by 3 log levels after singeing and polishing (P < 0.001). It increased again significantly by a 4.73-fold change until the classification step. Levels of Campylobacter, Lactobacillus, and Pseudomonas species and of E. coli followed a similar trend but varied between 0 and 2.49 × 104 bacterial cell equivalents per cm2. Microbial levels did not vary significantly between sampled carcass areas for any analyzed taxa. Running the polishing machine with a low water amount proved to be less prone to microbial recontamination compared with a high water amount (17.07-fold change, P = 0.024). In the studied slaughterhouse, slaughter of breeding sows did not produce microbiologically safe meat products (>104 cells per cm2) and the implementation of specific hazard analysis critical control point systems for the slaughter of breeding sows should be considered. A larger cohort from different abattoirs is needed to confirm our results and determine whether this is universally valid.


2019 ◽  
Vol 2019 ◽  
pp. 1-4
Author(s):  
Yohannes Kelifa Emiru ◽  
Ebrahim Abdela Siraj ◽  
Tekleab Teka Teklehaimanot ◽  
Gedefaw Getnet Amare

Objective. To evaluate the antibacterial effects of the leaf latex of Aloe weloensis against infectious bacterial strains. Methods. The leaf latex of A. weloensis at different concentrations (400, 500, and 600 mg/ml) was evaluated for antibacterial activities using the disc diffusion method against some Gram-negative species such as Escherichia coli (ATCC 14700) and Pseudomonas aeruginosa (ATCC 35619) and Gram-positive such as Staphylococcus aureus (ATCC 50080) and Enterococcus fecalis (ATCC 4623). Results. The tested concentrations of the latex ranging between 400 and 600 mg·mL−1 showed significant antibacterial activity against bacterial strain. The highest dose (600 mg/ml) of A. weloensis leaf latex revealed the maximum activity (25.93 ± 0.066 inhibition zone) followed by the dose 500 mg/ml against S. aureus. The lowest antibacterial activity was observed by the concentration 400 mg/ml (5.03 ± 0.03) against E. coli. Conclusion. The results of the present investigation suggest that the leaf latex of A. weloensis can be used as potential leads to discover new drugs to control some bacterial infections.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1122 ◽  
Author(s):  
Annika Sünderhauf ◽  
René Pagel ◽  
Axel Künstner ◽  
Anika E. Wagner ◽  
Jan Rupp ◽  
...  

Non-caloric artificial sweeteners are frequently discussed as components of the “Western diet”, negatively modulating intestinal homeostasis. Since the artificial sweetener saccharin is known to depict bacteriostatic and microbiome-modulating properties, we hypothesized oral saccharin intake to influence intestinal inflammation and aimed at delineating its effect on acute and chronic colitis activity in mice. In vitro, different bacterial strains were grown in the presence or absence of saccharin. Mice were supplemented with saccharin before or after induction of acute or chronic colitis using dextran sodium sulfate (DSS) and the extent of colitis was assessed. Ex vivo, intestinal inflammation, fecal bacterial load and composition were studied by immunohistochemistry analyses, quantitative PCR, 16 S RNA PCR or next generation sequencing in samples collected from analyzed mice. In vitro, saccharin inhibited bacterial growth in a species-dependent manner. In vivo, oral saccharin intake reduced fecal bacterial load and altered microbiome composition, while the intestinal barrier was not obviously affected. Of note, DSS-induced colitis activity was significantly improved in mice after therapeutic or prophylactic treatment with saccharin. Together, this study demonstrates that oral saccharin intake decreases intestinal bacteria count and hence encompasses the capacity to reduce acute and chronic colitis activity in mice.


2009 ◽  
Vol 76 (4) ◽  
pp. 1282-1284 ◽  
Author(s):  
Weidong Kong ◽  
Cindy H. Nakatsu

ABSTRACT Seven different bacterial strains and primer sets and a mixed community were used to evaluate the use of reverse transcriptase quantitative PCR (Q-PCR) and Q-PCR of oxygenase genes to assess various approaches for monitoring the bioremediation of polluted sites. Differences in maximum activity were seen when different RNA extraction kits were compared.


2015 ◽  
Vol 82 (4) ◽  
pp. 1080-1089 ◽  
Author(s):  
Dorothee Tegtmeier ◽  
Claire L. Thompson ◽  
Christine Schauer ◽  
Andreas Brune

ABSTRACTThe gut microbiota of termites and cockroaches represents complex metabolic networks of many diverse microbial populations. The distinct microenvironmental conditions within the gut and possible interactions among the microorganisms make it essential to investigate how far the metabolic properties of pure cultures reflect their activities in their natural environment. We established the cockroachShelfordella lateralisas a gnotobiotic model and inoculated germfree nymphs with two bacterial strains isolated from the guts of conventional cockroaches. Fluorescence microscopy revealed that both strains specifically colonized the germfree hindgut. In diassociated cockroaches, the facultatively anaerobic strain EbSL (a new species ofEnterobacteriaceae) always outnumbered the obligately anaerobic strain FuSL (a close relative ofFusobacterium varium), irrespective of the sequence of inoculation, which showed that precolonization by facultatively anaerobic bacteria does not necessarily favor colonization by obligate anaerobes. Comparison of the fermentation products of the cultures formedin vitrowith those accumulatedin situindicated that the gut environment strongly affected the metabolic activities of both strains. The pure cultures formed the typical products of mixed-acid or butyrate fermentation, whereas the guts of gnotobiotic cockroaches accumulated mostly lactate and acetate. Similar shifts toward more-oxidized products were observed when the pure cultures were exposed to oxygen, which corroborated the strong effects of oxygen on the metabolic fluxes previously observed in termite guts. Oxygen microsensor profiles of the guts of germfree, gnotobiotic, and conventional cockroaches indicated that both gut tissue and microbiota contribute to oxygen consumption and suggest that the oxygen status influences the colonization success.


2006 ◽  
Vol 56 (4) ◽  
pp. 721-725 ◽  
Author(s):  
Shuangya Chen ◽  
Lei Song ◽  
Xiuzhu Dong

Two mesophilic, anaerobic bacterial strains (ZLJ115T and L4-2) were isolated from the sludge of an anaerobic digester treating municipal solid waste and sewage in Fujian province, China. The strains were Gram-positive, spore-forming, motile rods (0·9–1·0×3·6–7·3 μm). Growth of the strains was observed at 20–42 °C and pH 6·0–9·5. Both strains fermented several mono- and disaccharides. The main fermentation products from glucose were acetate, ethanol, hydrogen and carbon dioxide. Optimal hydrogen production by the new isolates was observed at pH 8·8 and 39 °C, and 1·4 mol H2 was detected from fermentation of 1 mol glucose. The DNA G+C contents of strains ZLJ115T and L4-2 were 53·9 and 54·3 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolates represented a novel phyletic sublineage within cluster XI of the clostridia, clustering with four thermophilic species, with <93·8 % 16S rRNA gene sequence similarity to previously described species. Phenotypically, the new isolates were distinguished from their phylogenetic relatives by growing mesophilically and by fermenting a variety of pentoses, as well as their higher genome DNA G+C content. On the basis of polyphasic evidence from this study, a novel genus and species are proposed, Sporacetigenium mesophilum gen. nov., sp. nov.; strain ZLJ115T (=DSM 16796T=AS 1.5019T) is the type strain of Sporacetigenium mesophilum.


Sign in / Sign up

Export Citation Format

Share Document