scholarly journals Simultaneous inhibition of JAK and SYK kinases ameliorates chronic and destructive arthritis in mice

2015 ◽  
Vol 17 (1) ◽  
Author(s):  
Alba Llop-Guevara ◽  
Mónica Porras ◽  
Carla Cendón ◽  
Irene Di Ceglie ◽  
Francesco Siracusa ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 918
Author(s):  
Heejin Lee ◽  
Oh-Bin Kwon ◽  
Jae-Eon Lee ◽  
Yong-Hyun Jeon ◽  
Dong-Seok Lee ◽  
...  

The overall five-year survival rate for late-stage patients of ovarian cancer is below 29% due to disease recurrence and drug resistance. Cancer stem cells (CSCs) are known as a major contributor to drug resistance and recurrence. Accordingly, therapies targeting ovarian CSCs are needed to overcome the limitations of present treatments. This study evaluated the effect of trimebutine maleate (TM) targeting ovarian CSCs, using A2780-SP cells acquired by a sphere culture of A2780 epithelial ovarian cancer cells. TM is indicated as a gastrointestinal motility modulator and is known to as a peripheral opioid receptor agonist and a blocker for various channels. The GI50 of TM was approximately 0.4 µM in A2780-SP cells but over 100 µM in A2780 cells, demonstrating CSCs specific growth inhibition. TM induced G0/G1 arrest and increased the AV+/PI+ dead cell population in the A2780-SP samples. Furthermore, TM treatment significantly reduced tumor growth in A2780-SP xenograft mice. Voltage gated calcium channels (VGCC) and calcium-activated potassium channels (BKCa) were overexpressed on ovarian CSCs and targeted by TM; inhibition of both channels reduced A2780-SP cells viability. TM reduced stemness-related protein expression; this tendency was reproduced by the simultaneous inhibition of VGCC and BKCa compared to single channel inhibition. In addition, TM suppressed the Wnt/β-catenin, Notch, and Hedgehog pathways which contribute to many CSCs characteristics. Specifically, further suppression of the Wnt/β-catenin pathway by simultaneous inhibition of BKCa and VGCC is necessary for the effective and selective action of TM. Taken together, TM is a potential therapeutic drug for preventing ovarian cancer recurrence and drug resistance.


2021 ◽  
Vol 11 (5) ◽  
pp. 436
Author(s):  
Hung-Jen Shih ◽  
Chao-Yuan Chang ◽  
Milton Chiang ◽  
Van Long Le ◽  
Hao-Jen Hsu ◽  
...  

Three major cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, mediate endotoxemia-induced liver injury. With the similar structures to the binding domains of the three cytokines to their cognate receptors, the novel peptide KCF18 can simultaneously inhibit TNF-α, IL-1β, and IL-6. We elucidated whether KCF18 can alleviate injury of liver in endotoxemic mice. Adult male mice (BALB/cJ) were intraperitoneally (i.p.) administered lipopolysaccharide (LPS, 15 mg/kg; LPS group) or LPS with KCF18 (LKCF group). Mice in the LKCF group received KCF18 (i.p.) at 2 h (0.6 mg/kg), 4 h (0.3 mg/kg), 6 h (0.3 mg/kg), and 8 h (0.3mg/kg) after LPS administration. Mice were sacrificed after receiving LPS for 24 h. Our results indicated that the binding levels of the three cytokines to their cognate receptors in liver tissues in the LKCF group were significantly lower than those in the LPS group (all p < 0.05). The liver injury level, as measured by performing functional and histological analyses and by determining the tissue water content and vascular permeability (all p < 0.05), was significantly lower in the LKCF group than in the LPS group. Similarly, the levels of inflammation (macrophage activation, cytokine upregulation, and leukocyte infiltration), oxidation, necroptosis, pyroptosis, and apoptosis (all p < 0.05) in liver tissues in the LKCF group were significantly lower than those in the LPS group. In conclusion, the KCF18 peptide–based simultaneous inhibition of TNF-α, IL-1β, and IL-6 can alleviate liver injury in mice with endotoxemia.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nils Ludwig ◽  
Saigopalakrishna S. Yerneni ◽  
Elizabeth V. Menshikova ◽  
Delbert G. Gillespie ◽  
Edwin K. Jackson ◽  
...  

2011 ◽  
Vol 106 (9) ◽  
pp. 1297-1309 ◽  
Author(s):  
Navamayooran Thavanesan

The increase in the prevalence of obesity in recent years has prompted research into alternative methods of modulating body weight and body fat. The last decade has reflected this with a surge in studies investigating the potential of green tea as a natural agent of weight loss, with a view to confirming and elucidating the mechanisms underlying its effect on the body. Currently, it is widely believed that the polyphenolic components present in green tea have an anti-obesogenic effect on fat homeostasis, by increasing thermogenesis or reducing fat absorption among other ways. The data published to date, however, are inconsistent, with numerous putative modes of action suggested therein. While several unimodal mechanisms have been postulated, a more plausible explanation of the observed results might involve a multimodal approach. Such a mechanism is suggested here, involving simultaneous inhibition of the enzymes catechol-O-methyltransferase, acetyl-CoA carboxylase, fatty acid synthase and impeding absorption of fat via the gut. An evaluation of the available evidence supports a role of green tea in weight loss; however the extent of the effects obtained is still subject to debate, and requires more objective quantification in future research.


Author(s):  
Anatoliy Ivashchenko ◽  
Aizhan Rakhmetullina ◽  
Aigul Akimniyazova ◽  
Dana Aisina ◽  
Anna Pyrkova

Abstract The possibility of using miRNA (mRNA-inhibiting RNA) to inhibit infections caused by the coronaviruses COVID-19, SARS-CoV, and MERS-CoV has been shown. Using bioinformatics approaches, completely complementary miRNA (cc-miRNA) complexes were predicted to be able to bind and inhibit the translation of coronavirus proteins and the replication of COVID-19, SARS-CoV, and MERS-CoV genomes. For complexes of seven cc-miRc for COVID-19, seven cc-miRs for SARS-CoV, and eight cc-miRm for MERS-CoV, the interactions with the RNA genomes (gRNAs) of the corresponding coronaviruses was evaluated. The free energy of the interactions of cc-miRNAs with binding sites was significantly higher than the free energy of the interactions with other regions in gRNA, which ensures high selectivity of the binding of cc-miRNAs. Weak binding of cc-miRNAs to the mRNAs of 17508 human genes was shown, which suggests the absence of side effects of the cc-miRNAs in humans. A feature of this method is the simultaneous inhibition of translation and replication by several cc-miRNAs binding from the 5' end to the 3' end of gRNA. The use of several cc-miRNAs to suppress infections allows each of them to be used at a lower concentration to avoid side effects when one cc-miRNA is introduced into humans at a high concentration.


2019 ◽  
Vol 16 (1) ◽  
pp. 66 ◽  
Author(s):  
Wang Yuxiang ◽  
Li Xian ◽  
Liu Xueling ◽  
Chen Yi ◽  
Yang Chunhao ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nils Ludwig ◽  
Saigopalakrishna S. Yerneni ◽  
Elizabeth V. Menshikova ◽  
Delbert G. Gillespie ◽  
Edwin K. Jackson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document