scholarly journals Comprehensive transcriptome resource for response to phytohormone-induced signaling in Capsicum annuum L.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Junesung Lee ◽  
Jae-Young Nam ◽  
Hakgi Jang ◽  
Nayoung Kim ◽  
Yong-Min Kim ◽  
...  

Abstract Objectives Phytohormones are small signaling molecules with crucial roles in plant growth, development, and environmental adaptation to biotic and abiotic stress responses. Despite several previously published molecular studies focused on plant hormones, our understanding of the transcriptome induced by phytohormones remains unclear, especially in major crops. Here, we aimed to provide transcriptome dataset using RNA sequencing for phytohormone-induced signaling in plant. Data description We used high-throughput RNA sequencing profiling to investigate the pepper plant response to treatment with four major phytohormones (salicylic acid, jasmonic acid, ethylene, and abscisic acid). This dataset yielded 78 samples containing three biological replicates per six different time points for each treatment and the control, constituting 187.8 Gb of transcriptome data (2.4 Gb of each sample). This comprehensive parallel transcriptome data provides valuable information for understanding the relationships and molecular networks that regulate the expression of phytohormone-related genes involved in plant developments and environmental stress adaptation.

2021 ◽  
Author(s):  
Miao Liu ◽  
Chunyan Wang ◽  
Zhen Ji ◽  
Lei Zhang ◽  
Chunlong Li ◽  
...  

PLATZ transcription factors play important roles in plant growth, development, biotic and abiotic stress responses. However, how PLATZ regulates plant drought tolerance and ABA sensitivity remains largely unknown. Here, we show that PLATZ4 increases drought tolerance and ABA sensitivity in Arabidopsis thaliana by suppressing the expression of PIP2;8, while upregulating expression of ABI3, ABI4 and ABI5. PLATZ4 directly binds A/T-rich sequences within the PIP2;8 promoter. Consistent with this, PIP2;8 acts epistatically to PLATZ4. Furthermore, the aquaporin activity of PIP2;8 was confirmed in Xenopus laevis oocytes in response to osmotic stress. Analysis of water loss of seedlings overexpressing PIP2;8 or lacking PIP2;8 function indicated that PIP2;8-mediated water flow is particularly active in response to drought stress in planta. In platz4 mutant and PLATZ4-overexpressing plants, water loss and stomatal closure changed oppositely to those in pip2;8 mutants and PIP2;8-overexpressing plants, respectively. In addition, the interaction between PLATZ4 and AITR6 was confirmed by several assays, and the binding of PIP2;8 promoter by PLATZ4 was strengthened by an interaction with AITR6. Collectively, our findings reveal that PLATZ4 interacts with AITR6 to increase ABA sensitivity and drought tolerance by upregulating expression of ABI3, ABI4 and ABI5 while inhibiting the expression of PIP2;8 and associated genes.


2020 ◽  
Vol 21 (18) ◽  
pp. 6872
Author(s):  
Woo-Jong Hong ◽  
Xu Jiang ◽  
Hye Ryun Ahn ◽  
Juyoung Choi ◽  
Seong-Ryong Kim ◽  
...  

Rice (Oryza sativa L.), a staple crop plant that is a major source of calories for approximately 50% of the human population, exhibits various physiological responses against temperature stress. These responses are known mechanisms of flexible adaptation through crosstalk with the intrinsic circadian clock. However, the molecular regulatory network underlining this crosstalk remains poorly understood. Therefore, we performed systematic transcriptome data analyses to identify the genes involved in both cold stress responses and diurnal rhythmic patterns. Here, we first identified cold-regulated genes and then identified diurnal rhythmic genes from those (119 cold-upregulated and 346 cold-downregulated genes). We defined cold-responsive diurnal rhythmic genes as CD genes. We further analyzed the functional features of these CD genes through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses and performed a literature search to identify functionally characterized CD genes. Subsequently, we found that light-harvesting complex proteins involved in photosynthesis strongly associate with the crosstalk. Furthermore, we constructed a protein–protein interaction network encompassing four hub genes and analyzed the roles of the Stay-Green (SGR) gene in regulating crosstalk with sgr mutants. We predict that these findings will provide new insights in understanding the environmental stress response of crop plants against climate change.


2020 ◽  
Vol 27 ◽  
Author(s):  
Fırat Kurt

: Oligopeptide transporter 3 (OPT3) proteins are one of the subsets of OPT clade, yet little is known about these transporters. Therefore, homolog OPT3 proteins in several plant species were investigated and characterized using bioinformatical tools. Motif and co-expression analyses showed that OPT3 proteins may be involved in both biotic and abiotic stress responses as well as growth and developmental processes. AtOPT3 usually seemed to take part in Fe homeostasis whereas ZmOPT3 putatively interacted with proteins involved in various biological processes from plant defense system to stress responses. Glutathione (GSH), as a putative alternative chelating agent, was used in the AtOPT3 and ZmOPT3 docking analyses to identify their putative binding residues. The information given in this study will contribute to the understanding of OPT3 proteins’ interactions in various pathways and to the selection of potential ligands for OPT3s.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Velma Herwanto ◽  
Benjamin Tang ◽  
Ya Wang ◽  
Maryam Shojaei ◽  
Marek Nalos ◽  
...  

Abstract Objectives Hospitalized patients who presented within the last 24 h with a bacterial infection were recruited. Participants were assigned into sepsis and uncomplicated infection groups. In addition, healthy volunteers were recruited as controls. RNA was prepared from whole blood, depleted from beta-globin mRNA and sequenced. This dataset represents a highly valuable resource to better understand the biology of sepsis and to identify biomarkers for severe sepsis in humans. Data description The data presented here consists of raw and processed transcriptome data obtained by next generation RNA sequencing from 105 peripheral blood samples from patients with uncomplicated infections, patients who developed sepsis, septic shock patients, and healthy controls. It is provided as raw sequenced reads and as normalized log2 transformed relative expression levels. This data will allow performing detailed analyses of gene expression changes between uncomplicated infections and sepsis patients, such as identification of differentially expressed genes, co-regulated modules as well as pathway activation studies.


2021 ◽  
Vol 13 (5) ◽  
pp. 2826
Author(s):  
Yan Tong ◽  
Hui Huang ◽  
YuHua Wang

Trihelix transcription factors play important roles in plant growth, development and various stress responses. In this study, we identified 32 trihelix family genes (DoGT) in the important Chinese medicinal plant Dendrobium officinale. These trihelix genes could be classified into five different subgroups. The gene structure and conserved functional domain of these trihelix genes were similar in the same subfamily but diverged between different subfamilies. Various stresses responsive cis-elements presented in the promoters of DoGT genes, suggesting that the trihelix genes might respond to the environmental stresses. Expressional changes of DoGT genes in three tissues and under cold treatment suggested that trihelix genes were involved in diverse functions during D. officinale development and cold tolerance. This study provides novel insights into the phylogenetic relationships and functions of the D. officinaletrihelix genes, which will aid future functional studies investigating the divergent roles of trihelix genes belonging to other species.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jordan Ubbens ◽  
Mikolaj Cieslak ◽  
Przemyslaw Prusinkiewicz ◽  
Isobel Parkin ◽  
Jana Ebersbach ◽  
...  

Association mapping studies have enabled researchers to identify candidate loci for many important environmental tolerance factors, including agronomically relevant tolerance traits in plants. However, traditional genome-by-environment studies such as these require a phenotyping pipeline which is capable of accurately measuring stress responses, typically in an automated high-throughput context using image processing. In this work, we present Latent Space Phenotyping (LSP), a novel phenotyping method which is able to automatically detect and quantify response-to-treatment directly from images. We demonstrate example applications using data from an interspecific cross of the model C4 grass Setaria, a diversity panel of sorghum (S. bicolor), and the founder panel for a nested association mapping population of canola (Brassica napus L.). Using two synthetically generated image datasets, we then show that LSP is able to successfully recover the simulated QTL in both simple and complex synthetic imagery. We propose LSP as an alternative to traditional image analysis methods for phenotyping, enabling the phenotyping of arbitrary and potentially complex response traits without the need for engineering-complicated image-processing pipelines.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8471 ◽  
Author(s):  
Lei Ling ◽  
Yue Qu ◽  
Jintao Zhu ◽  
Dan Wang ◽  
Changhong Guo

Valine-glutamine (VQ) proteins are plant-specific proteins that play crucial roles in plant development as well as biotic and abiotic stress responses. VQ genes have been identified in various plants; however, there are no systematic reports in Cicer arietinum or Medicago truncatula. Herein, we identified 19 and 32 VQ genes in C. arietinum and M. truncatula, respectively. A total of these VQ genes were divided into eight groups (I–VIII) based on phylogenetic analysis. Gene structure analyses and motif patterns revealed that these VQ genes might have originated from a common ancestor. In silico analyses demonstrated that these VQ genes were expressed in different tissues. qRT-PCR analysis indicated that the VQ genes were differentially regulated during multiple abiotic stresses. This report presents the first systematic analysis of VQ genes from C. arietinum and M. truncatula and provides a solid foundation for further research of the specific functions of VQ proteins.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1800
Author(s):  
Dongliang Hu ◽  
Lijuan Wei ◽  
Weibiao Liao

Brassinosteroids (BRs) are known as the sixth type of plant hormone participating in various physiological and biochemical activities and play an irreplaceable role in plants. Small-molecule compounds (SMCs) such as nitric oxide (NO), ethylene, hydrogen peroxide (H2O2), and hydrogen sulfide (H2S) are involved in plant growth and development as signaling messengers. Recently, the involvement of SMCs in BR-mediated growth and stress responses is gradually being discovered in plants, including seed germination, adventitious rooting, stem elongation, fruit ripening, and stress responses. The crosstalk between BRs and SMCs promotes plant development and alleviates stress damage by modulating the antioxidant system, photosynthetic capacity, and carbohydrate metabolism, as well as osmotic adjustment. In the present review, we try to explain the function of BRs and SMCs and their crosstalk in the growth, development, and stress resistance of plants.


2016 ◽  
Vol 67 (21) ◽  
pp. 5961-5973 ◽  
Author(s):  
Mathilde Royer ◽  
David Cohen ◽  
Nathalie Aubry ◽  
Vera Vendramin ◽  
Simone Scalabrin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document