scholarly journals Reduced mitochondrial D-loop methylation levels in sporadic amyotrophic lateral sclerosis

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrea Stoccoro ◽  
Adam R. Smith ◽  
Lorena Mosca ◽  
Alessandro Marocchi ◽  
Francesca Gerardi ◽  
...  

Abstract Background Mitochondrial dysregulation and aberrant epigenetic mechanisms have been frequently reported in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), and several researchers suggested that epigenetic dysregulation in mitochondrial DNA (mtDNA) could contribute to the neurodegenerative process. We recently screened families with mutations in the major ALS causative genes, namely C9orf72, SOD1, FUS, and TARDBP, observing reduced methylation levels of the mtDNA regulatory region (D-loop) only in peripheral lymphocytes of SOD1 carriers. However, until now no studies investigated the potential role of mtDNA methylation impairment in the sporadic form of ALS, which accounts for the majority of disease cases. The aim of the current study was to investigate the D-loop methylation levels and the mtDNA copy number in sporadic ALS patients and compare them to those observed in healthy controls and in familial ALS patients. Pyrosequencing analysis of D-loop methylation levels and quantitative analysis of mtDNA copy number were performed in peripheral white blood cells from 36 sporadic ALS patients, 51 age- and sex-matched controls, and 27 familial ALS patients with germinal mutations in SOD1 or C9orf72 that represent the major familial ALS forms. Results In the total sample, D-loop methylation levels were significantly lower in ALS patients compared to controls, and a significant inverse correlation between D-loop methylation levels and the mtDNA copy number was observed. Stratification of ALS patients into different subtypes revealed that both SOD1-mutant and sporadic ALS patients showed lower D-loop methylation levels compared to controls, while C9orf72-ALS patients showed similar D-loop methylation levels than controls. In healthy controls, but not in ALS patients, D-loop methylation levels decreased with increasing age at sampling and were higher in males compared to females. Conclusions Present data reveal altered D-loop methylation levels in sporadic ALS and confirm previous evidence of an inverse correlation between D-loop methylation levels and the mtDNA copy number, as well as differences among the major familial ALS subtypes. Overall, present results suggest that D-loop methylation and mitochondrial replication are strictly related to each other and could represent compensatory mechanisms to counteract mitochondrial impairment in sporadic and SOD1-related ALS forms.

2021 ◽  
Vol 36 (6) ◽  
pp. 1205-1205
Author(s):  
Etiane Navarro ◽  
Charles J Golden

Abstract Objective Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease caused by degeneration of the upper and lower motor neurons. This literature review examines the recurring etiology of cognitive impairments in ALS through empirical literature. The current study explores ALS across different subtypes and potential cognitive impairments. Two classifications are primarily examined ALS, and ALS with frontotemporal dementia (ALS-FTD). Involving three categories: familial inheritance pattern, genetic mutation, or sporadic. Neuropsychological studies affirm cognitive impairments in individuals diagnosed with ALS and ALS-FTD. Data Selection Data was culled from the American Psychological Association (PsycInfo), PubMed, Google Scholar. Terms used in this literature review include cognitive impairment in ALS and ALS-FTD, executive function deficiencies in ALS, neuropsychology in ALS, neuropsychological deficits in ALS, neuropsychological assessments for ALS, cognitive impairments in familial ALS, genetic ALS, and sporadic ALS, familial ALS, sporadic ALS, genetic mutations involved in ALS. Search dates December 20–23 of 2020 and March 3–4 of 2021. A total of 40 studies were examined. Data Synthesis ALS-patients demonstrate a significant cognitive impairment. However, influencing comorbidities accompanying the disease may be contributing to these impairments. Researchers employed neuroimaging and neuropsychological batteries to further understand influencing factors involved in ALS and cognition. Conclusions Researchers now understand ALS as a multi-symptomatic disorder and acknowledge the presence of cognitive impairments at various encased levels. There are limitations in neuropsychological batteries that accommodate for executive dysfunctions observed in ALS patients. Future studies should explore neuropsychological assessments that accommodate for motor deficits and dysarthria when assessing cognitive impairment in ALS patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James C. Dodge ◽  
Jinlong Yu ◽  
S. Pablo Sardi ◽  
Lamya S. Shihabuddin

AbstractAberrant cholesterol homeostasis is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal neuromuscular disease that is due to motor neuron (MN) death. Cellular toxicity from excess cholesterol is averted when it is enzymatically oxidized to oxysterols and bile acids (BAs) to promote its removal. In contrast, the auto oxidation of excess cholesterol is often detrimental to cellular survival. Although oxidized metabolites of cholesterol are altered in the blood and CSF of ALS patients, it is unknown if increased cholesterol oxidation occurs in the SC during ALS, and if exposure to oxidized cholesterol metabolites affects human MN viability. Here, we show that in the SOD1G93A mouse model of ALS that several oxysterols, BAs and auto oxidized sterols are increased in the lumbar SC, plasma, and feces during disease. Similar changes in cholesterol oxidation were found in the cervical SC of sporadic ALS patients. Notably, auto-oxidized sterols, but not oxysterols and BAs, were toxic to iPSC derived human MNs. Thus, increased cholesterol oxidation is a manifestation of ALS and non-regulated sterol oxidation likely contributes to MN death. Developing therapeutic approaches to restore cholesterol homeostasis in the SC may lead to a treatment for ALS.


2021 ◽  
Vol 8 (1) ◽  
pp. 25-38
Author(s):  
Marisa Cappella ◽  
Pierre-François Pradat ◽  
Giorgia Querin ◽  
Maria Grazia Biferi

Amyotrophic lateral sclerosis (ALS) is a devastating and incurable motor neuron (MN) disorder affecting both upper and lower MNs. Despite impressive advances in the understanding of the disease’s pathological mechanism, classical pharmacological clinical trials failed to provide an efficient cure for ALS over the past twenty years. Two different gene therapy approaches were recently approved for the monogenic disease Spinal muscular atrophy, characterized by degeneration of lower MNs. This milestone suggests that gene therapy-based therapeutic solutions could be effective for the treatment of ALS. This review summarizes the possible reasons for the failure of traditional clinical trials for ALS. It provides then a focus on the advent of gene therapy approaches for hereditary forms of ALS. Specifically, it describes clinical use of antisense oligonucleotides in three familial forms of ALS, caused by mutations in SOD1, C9orf72 and FUS genes, respectively.. Clinical and pre-clinical studies based on AAV-mediated gene therapy approaches for both familial and sporadic ALS cases are presented as well. Overall, this overview highlights the potential of gene therapy as a transforming technology that will have a huge impact on treatment perspective for ALS patients and on the design of future clinical trials.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lu Chen ◽  
Yong Chen ◽  
Mingming Zhao ◽  
Lemin Zheng ◽  
Dongsheng Fan

Abstract To compare the plasma concentrations of trimethylamine N-oxide (TMAO) and its precursors in amyotrophic lateral sclerosis (ALS) patients, their spouses and healthy controls and to find associations between gut microbiota metabolites and ALS. ALS patients were recruited at Peking University Third Hospital from January 2015 to December 2018. Information was collected from their spouses at the same time. Age and gender matched healthy controls were recruited from individuals who visited the physical examination center for health checkups. Blood samples were collected after at least 4 h of fasting. Concentrations of the metabolites were quantified using stable isotope dilution liquid chromatography–tandem mass spectrometry. Group differences were analyzed using parametric and nonparametric tests, as appropriate. In this study, 160 patients with ALS were recruited. In these patients, 63 were compared with their spouses, 148 were compared with age and gender matched controls, and 60 were compared with both their spouses and heathy controls in the same time. The carnitine concentration was significantly higher in patients than in their spouses, while there were no significant differences in the concentrations of other metabolites. The carnitine and betaine concentrations were higher, while the choline, TMAO and butyrobetaine concentrations were lower in ALS than in healthy controls. The concentrations of the metabolites in the spouses were more similar to the ALS patients rather than to the healthy controls. In the ALS group, the plasma concentrations of carnitine, betaine, choline and TMAO were inversely related to the severity of upper motor neuron impairment. The TMAO metabolic pathway of the gut microbiota is disturbed in both ALS patients and their spouses, which might suggest that the changes in the gut microbiota occurred before disease onset. The negative correlations between the involvement of UMNs and the concentrations of the metabolites might suggest that the inhibition of this metabolic pathway might lead to a better prognosis in ALS patients.


Neurosurgery ◽  
2005 ◽  
Vol 57 (5) ◽  
pp. 984-989 ◽  
Author(s):  
Daniel Yoshor ◽  
Arnett Klugh ◽  
Stanley H. Appel ◽  
Lanny J. Haverkamp

Abstract OBJECTIVE: The high incidence of spondylosis in patients at the mean age of onset (55.7 yr) of amyotrophic lateral sclerosis (ALS) can make recognition of ALS as a cause of weakness difficult. METHODS: To assess the impact of this diagnostic dilemma on neurosurgical practice, we performed a retrospective analysis of a database of more than 1500 patients with motor neuron disease. RESULTS: Of 1131 patients with typical, sporadic ALS, 47 (4.2%) underwent decompressive spinal surgery after the onset of retrospectively recognized symptoms of ALS. Among 55 operations in 47 ALS patients, 86% yielded no improvement, 9% produced minor improvement, and only 5% provided significant benefit. Cervical decompression was performed in 56%, lumbar in 42%, and thoracic in 2%. Foot drop was a symptom prompting surgery in 11 patients, and in 10, this finding was subsequently attributed solely to ALS. No differences between ALS patients who underwent spinal decompression and other ALS patients were noted regarding age at symptom onset, severity of impairment at time of diagnosis, or rate of disease progression. Not surprisingly, patients who had spinal surgery tended to have a longer interval between retrospectively recognized symptom onset and diagnosis of ALS. CONCLUSION: A small but significant number of patients with unrecognized ALS undergo spinal surgery that in retrospect may be inappropriate. The possibility of ALS must be considered in the evaluation of patients with weakness even in the presence of radiographic evidence of spondylosis and nerve root or spinal cord impingement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojing Gu ◽  
Yongping Chen ◽  
Qianqian Wei ◽  
Yanbing Hou ◽  
Bei Cao ◽  
...  

Background: CYLD Lysine 63 Deubiquitinase gene (CYLD) was recently identified to be a novel causative gene for frontal temporal dementia (FTD)-amyotrophic lateral sclerosis (ALS). In the current study, we aimed to (1) systematically screen the mutations of CYLD in a large cohort of Chinese ALS patients, (2) study the genotype–phenotype correlation, and (3) explore the role of CYLD in ALS via rare variants burden analysis.Methods: A total of 978 Chinese sporadic ALS (sALS) patients and 46 familial ALS (fALS) patients were sequenced with whole-exome sequencing and analyzed rare variants in CYLD with minor allele frequency <0.1%.Results: In total, seven rare missense variants in CYLD have been identified in 7 (0.72%) patients among 978 sALS patients. Two (4.3%) rare missense variants were identified among the 46 fALS cases, in which one patient was diagnosed as having comorbidity of ALS and progressive supranuclear palsy (PSP). Moreover, the burden analysis indicated no enrichment of rare variants in CYLD among patients with ALS.Conclusion: In conclusion, our study extended the genotype and phenotype of CYLD in ALS, but the pathogenicity of these variants needs to be further verified. Moreover, burden analysis argued against the role of CYLD in the pathogenesis of ALS. More studies from different ethnicities would be needed.


2018 ◽  
Vol 146 (11-12) ◽  
pp. 646-652
Author(s):  
Milos Brkusanin ◽  
Irena Jeftovic-Velkova ◽  
Vladimir Jovanovic ◽  
Stojan Peric ◽  
Jovan Pesovic ◽  
...  

Introduction/Objective. Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease. The majority of cases are apparently sporadic ALS (SALS) with variants in susceptibility genes or sometimes in high-risk ALS genes. Two ALS susceptibility genes are SMN1, whose functional loss causes spinal muscular atrophy (SMA), and a nearly identical SMN2 gene, which modulates SMA severity. In this study we examined the association of copy number variations (CNVs) of SMN1 and SMN2 genes and two additional genes, SERF1 and NAIP, residing in the same genomic region (i.e. 5q13.2 segmental duplication), with SALS in patients from Serbia. Methods. Multiplex ligation-dependent probe amplification was used to determine CNVs of each gene in a clinically well-characterised group of 153 Serbian SALS patients and 153 controls. Results. Individual association between SMN1, SMN2, SERF1 or NAIP CNVs and SALS susceptibility or survival was not found. Survival curves based on the multivariable Cox regression analysis showed that three SMN1 copies, lower ALS Functional Rating Scale Revised (ALSFRS-R) score at the time of diagnosis, faster decline of the ALSFRS-R score over time, and shorter diagnostic delay result in shorter survival of Serbian SALS patients. Conclusion. Clinical variables might be complemented with the SMN1 copy number to improve prediction of survival in Serbian SALS patients.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jordi Caplliure-Llopis ◽  
Dolores Escrivá ◽  
María Benlloch ◽  
José Enrique de la Rubia Ortí ◽  
José María Estrela ◽  
...  

Objective: Musculoskeletal functional deterioration in Amyotrophic lateral sclerosis (ALS) is associated with an increase in bone fractures. The purpose of this study was to evaluate the influence of sex, ALS type, on bone quality in patients with ALS compared to healthy controls. The impact on bone health of the clinical status and some metabolic parameters was also analyzed in ALS patients.Methods: A series of 33 voluntary patients with ALS, and 66 healthy individuals matched in sex and age underwent assessment of bone mass quality using quantitative ultrasound (QUS) of the calcaneus. Ultrasonic broadband attenuation (BUA), the speed of sound (SOS), stiffness index and T-score were measured. Bone mineral density (BMD) was estimated using standard equations. Apart from fat and muscle mass percentage determinations, clinical baseline measures in ALS patients included ALSFRS-R score, Barthel index for activities of daily living, pulmonary function measured using FVC, and muscular strength assessed by a modified MRC grading scale. Laboratory tests included serum calcium, 25-HO-cholecalciferol (Vitamin D), alkaline phosphatase (ALP), T4 and TSH.Results: All bone parameters evaluated were statistically significant lower in ALS patients than in healthy controls. ALS females showed significantly lower bone parameters than healthy females. According to the estimated BMD, there were 25 ALS patients (75.8%) and 36 (54.5%) healthy individuals showing an osteoporotic profile (BMD <0.700 g/cm2). Only 16.7% of the ALS females had T-scores indicative of healthy bones. There was no correlation between any of the clinical parameters analyzed and the bone QUS measurements. Vitamin D and TSH levels positively correlated with all the bone parameters.Conclusions: This study confirms that ALS patients, particularly females, exhibited deteriorated bone health as compared to healthy individuals. These structural bone changes were independent of ALS subtype and clinical status. Bone health in ALS patients seems to be related to certain metabolic parameters such as Vitamin D and TSH levels.


Author(s):  
Donya Pakravan ◽  
Gabriele Orlando ◽  
Valérie Bercier ◽  
Ludo Van Den Bosch

Abstract Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disease selectively affecting motor neurons, leading to progressive paralysis. Although most cases are sporadic, ∼10% are familial. Similar proteins are found in aggregates in sporadic and familial ALS, and over the last decade, research has been focused on the underlying nature of this common pathology. Notably, TDP-43 inclusions are found in almost all ALS patients, while FUS inclusions have been reported in some familial ALS patients. Both TDP-43 and FUS possess ‘low-complexity domains’ (LCDs) and are considered as ‘intrinsically disordered proteins’ (IDPs), which form liquid droplets in vitro due to the weak interactions caused by the LCDs. Dysfunctional ‘liquid‒liquid phase separation’ (LLPS) emerged as a new mechanism linking ALS-related proteins to pathogenesis. Here, we review the current state of knowledge on ALS-related gene products associated with a proteinopathy and discuss their status as LLPS proteins. In addition, we highlight the therapeutic potential of targeting LLPS for treating ALS.


Sign in / Sign up

Export Citation Format

Share Document