scholarly journals The effects and potential applications of concentrated growth factor in dentin–pulp complex regeneration

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zixia Li ◽  
Liu Liu ◽  
Liu Wang ◽  
Dongzhe Song

AbstractThe dentin–pulp complex is essential for the long-term integrity and viability of teeth but it is susceptible to damage caused by external factors. Because traditional approaches for preserving the dentin–pulp complex have various limitations, there is a need for novel methods for dentin–pulp complex reconstruction. The development of stem cell-based tissue engineering has given rise to the possibility of combining dental stem cells with a tissue-reparative microenvironment to promote dentin–pulp complex regeneration. Concentrated growth factor, a platelet concentrate, is a promising scaffold for the treatment of dentin–pulp complex disorders. Given its characteristics of autogenesis, convenience, usability, and biodegradability, concentrated growth factor has gained popularity in medical and dental fields for repairing bone defects and promoting soft-tissue healing. Numerous in vitro studies have demonstrated that concentrated growth factor can promote the proliferation and migration of dental stem cells. Here, we review the current state of knowledge on the effects of concentrated growth factor on stem cells and its potential applications in dentin–pulp complex regeneration.

2020 ◽  
Vol 29 (1) ◽  
pp. 1-8
Author(s):  
Hamid Hammad Enezei ◽  
Ali Al Qabbani ◽  
Azlina Ahmad ◽  
Mohd Fadhli Khamis ◽  
Abdelkader Hassani ◽  
...  

Author(s):  
Kamil Wartalski ◽  
Gabriela Gorczyca ◽  
Jerzy Wiater ◽  
Zbigniew Tabarowski ◽  
Małgorzata Duda

AbstractEndothelial cells (ECs), the primary component of the vasculature, play a crucial role in neovascularization. However, the number of endogenous ECs is inadequate for both experimental purposes and clinical applications. Porcine ovarian putative stem cells (poPSCs), although not pluripotent, are characterized by great plasticity. Therefore, this study aimed to investigate whether poPSCs have the potential to differentiate into cells of endothelial lineage. poPSCs were immunomagnetically isolated from postnatal pig ovaries based on the presence of SSEA-4 protein. Expression of mesenchymal stem cells (MSCs) markers after pre-culture, both at the level of mRNA: ITGB1, THY, and ENG and corresponding protein: CD29, CD90, and CD105 were significantly higher compared to the control ovarian cortex cells. To differentiate poPSCs into ECs, inducing medium containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), ascorbic acid, and heparin was applied. After 14 days, poPSC differentiation into ECs was confirmed by immunofluorescence staining for vascular endothelial cadherin (VECad) and vascular endothelial growth factor receptor-2 (VEGFR-2). Semi-quantitative WB analysis of these proteins confirmed their high abundance. Additionally, qRT-PCR showed that mRNA expression of corresponding marker genes: CDH5, KDR was significantly higher compared with undifferentiated poPSCs. Finally, EC functional status was confirmed by the migration test that revealed that they were capable of positive chemotaxis, while tube formation assay demonstrated their ability to develop capillary networks. In conclusion, our results provided evidence that poPSCs may constitute the MSC population in the ovary and confirmed that they might be a potential source of ECs for tissue engineering.


2020 ◽  
Vol 29 ◽  
pp. 096368972090246 ◽  
Author(s):  
Guan Qun Zhu ◽  
Seung Hwan Jeon ◽  
Kyu Won Lee ◽  
Hyuk Jin Cho ◽  
U-Syn Ha ◽  
...  

There is still a lack of sufficient research on the mechanism behind neurogenic bladder (NB) treatment. The aim of this study was to explore the effect of overexpressed stromal cell-derived factor-1 (SDF-1) secreted by engineered immortalized mesenchymal stem cells (imMSCs) on the NB. In this study, primary bone marrow mesenchymal stem cells (BM-MSCs) were transfected into immortalized upregulated SDF-1-engineered BM-MSCs (imMSCs/eSDF-1+) or immortalized normal SDF-1-engineered BM-MSCs (imMSCs/eSDF-1−). NB rats induced by bilateral pelvic nerve (PN) transection were treated with imMSCs/eSDF-1+, imMSCs/eSDF-1−, or sham. After a 4-week treatment, the bladder function was assessed by cystometry and voiding pattern analysis. The PN and bladder tissues were evaluated via immunostaining and western blotting analysis. We found that imMSCs/eSDF-1+ expressed higher levels of SDF-1 in vitro and in vivo. The treatment of imMSCs/eSDF-1+ improved NB and evidently stimulated the recovery of bladder wall in NB rats. The recovery of injured nerve was more effective in the NB+imMSCs/eSDF-1+ group than in other groups. High SDF-1 expression improved the levels of vascular endothelial growth factor and basic fibroblast growth factor. Apoptosis was decreased after imMSCs injection, and was detected rarely in the NB+imMSCs/eSDF-1+ group. Injection of imMSCs boosted the expression of neuronal nitric oxide synthase, p-AKT, and p-ERK in the NB+imMSCs/eSDF-1+ group than in other groups. Our findings demonstrated that overexpression of SDF-1 induced additional MSC homing to the injured tissue, which improved the NB by accelerating the restoration of injured nerve in a rat model.


2013 ◽  
Vol 815 ◽  
pp. 345-349 ◽  
Author(s):  
Ching Wen Hsu ◽  
Ping Liu ◽  
Song Song Zhu ◽  
Feng Deng ◽  
Bi Zhang

Here we reported a combined technique for articular cartilage repair, consisting of bone arrow mesenchymal stem cells (BMMSCs) and poly (dl-lactide-co-glycolide-b-ethylene glycol-b-dl-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers carried with tissue growth factor (TGF-belat1). In the present study, BMMSCs seeded on PLGA-PEG-PLGA with were incubated in vitro, carried or not TGF-belta1, Then the effects of the composite on repair of cartilage defect were evaluated in rabbit knee joints in vivo. Full-thickness cartilage defects (diameter: 5 mm; depth: 3 mm) in the patellar groove were either left empty (n=18), implanted with BMMSCs/PLGA (n=18), TGF-belta1 modified BMMSCs/PLGA-PEG-PLGA. The defect area was examined grossly, histologically at 6, 24 weeks postoperatively. After implantation, the BMMSCs /PLGA-PEG-PLGA with TGF-belta1 group showed successful hyaline-like cartilage regeneration similar to normal cartilage, which was superior to the other groups using gross examination, qualitative and quantitative histology. These findings suggested that a combination of BMMSCs/PLGA-PEG-PLGA carried with tissue growth factor (TGF-belat1) may be an alternative treatment for large osteochondral defects in high loading sites.


Reproduction ◽  
2008 ◽  
Vol 136 (5) ◽  
pp. 543-557 ◽  
Author(s):  
Pedro M Aponte ◽  
Takeshi Soda ◽  
Katja J Teerds ◽  
S Canan Mizrak ◽  
Henk J G van de Kant ◽  
...  

The access to sufficient numbers of spermatogonial stem cells (SSCs) is a prerequisite for the study of their regulation and further biomanipulation. A specialized medium and several growth factors were tested to study thein vitrobehavior of bovine type A spermatogonia, a cell population that includes the SSCs and can be specifically stained for the lectin Dolichos biflorus agglutinin. During short-term culture (2 weeks), colonies appeared, the morphology of which varied with the specific growth factor(s) added. Whenever the stem cell medium was used, round structures reminiscent of sectioned seminiferous tubules appeared in the core of the colonies. Remarkably, these round structures always contained type A spermatogonia. When leukemia inhibitory factor (LIF), epidermal growth factor (EGF), or fibroblast growth factor 2 (FGF2) were added, specific effects on the numbers and arrangement of somatic cells were observed. However, the number of type A spermatogonia was significantly higher in cultures to which glial cell line-derived neurotrophic factor (GDNF) was added and highest when GDNF, LIF, EGF, and FGF2 were all present. The latter suggests that a proper stimulation of the somatic cells is necessary for optimal stimulation of the germ cells in culture. Somatic cells present in the colonies included Sertoli cells, peritubular myoid cells, and a few Leydig cells. A transplantation experiment, using nude mice, showed the presence of SSCs among the cultured cells and in addition strongly suggested a more than 10 000-fold increase in the number of SSCs after 30 days of culture. These results demonstrate that bovine SSC self-renew in our specialized bovine culture system and that this system can be used for the propagation of these cells.


2021 ◽  
Vol 12 (1) ◽  
pp. 561-572
Author(s):  
Wen Zeng ◽  
Yu Wang ◽  
Yufeng Xi ◽  
Guoqing Wei ◽  
Rong Ju

Abstract Objectives Hypoxic–ischemic brain damage (HIBD) is a major cause of brain injury in neonates. Bone marrow mesenchymal stem cells (BMSCs) show therapeutic potential for HIBD, and genetic modification may enhance their neuroprotective effects. The goal of this study was to investigate the neuroprotective effects of hepatocyte growth factor (HGF)-overexpressing BMSCs (BMSCs-HGF) against HIBD and their underlying mechanisms. Methods: BMSCs were transfected with HGF using adenoviral vectors. HIBD models were established and then BMSCs were transplanted into the brains of HIBD rats via intraventricular injection. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to measure cerebral infarction volumes. In vitro, primary cultured cortical neurons were co-cultured with BMSCs in a Transwell plate system. Oxygen–glucose deprivation (OGD) was applied to imitate hypoxic–ischemic insult, and PD98059 was added to the culture medium to block the phosphorylation of extracellular signal-regulated kinase (ERK). Cell apoptosis was determined using TUNEL staining. The expression of HGF was measured by immunofluorescence, real-time quantitative PCR (RT-qPCR), and western blots. The expression of phosphorylated ERK (p-ERK) and B-cell lymphoma-2 (Bcl-2) was measured by western blots. Results HGF-gene transfection promoted BMSC proliferation. Moreover, BMSCs-HGF decreased HIBD-induced cerebral infarction volumes and enhanced the protective effects of the BMSCs against HIBD. BMSCs-HGF also increased expression of HGF, p-ERK, and Bcl-2 in brain tissues. In vitro, BMSC-HGF protected neurons against OGD-induced apoptosis. Inhibition of ERK phosphorylation abolished the neuroprotective effect of BMSCs-HGF against OGD. Conclusions BMSCs-HGF is a potential treatment for HIBD and that the ERK/Bcl-2 pathway is involved in the underlying neuroprotective mechanism.


2021 ◽  
Author(s):  
Koichi Nishino ◽  
Yasuhiro Yoshimatsu ◽  
Tomoki Muramatsu ◽  
Yasuhito Sekimoto ◽  
Keiko Mitani ◽  
...  

Abstract Lymphangioleiomyomatosis (LAM) is a rare pulmonary disease characterised by the proliferation of smooth muscle-like cells (LAM cells), and an abundance of lymphatic vessels in LAM lesions. Studies reported that vascular endothelial growth factor-D (VEGF-D) secreted by LAM cells contributes to LAM-associated lymphangiogenesis, however, the precise mechanisms of lymphangiogenesis and characteristics of lymphatic endothelial cells (LECs) in LAM lesions have not yet been elucidated. In this study, human primary-cultured LECs were obtained both from LAM-affected lung tissues (LAM-LECs) and normal lung tissues (control LECs) using fluorescence-activated cell sorting (FACS). We found that LAM-LECs had significantly higher ability of proliferation and migration compared to control LECs. VEGF-D significantly promoted migration of LECs but not proliferation of LECs in vitro. cDNA microarray and FACS analysis revealed the expression of vascular endothelial growth factor receptor (VEGFR)-3 and integrin α9 were elevated in LAM-LECs. Inhibition of VEGFR-3 suppressed proliferation and migration of LECs, and blockade of integrin α9 reduced VEGF-D-induced migration of LECs. Our data uncovered the distinct features of LAM-associated LECs, increased proliferation and migration, which may be due to higher expression of VEGFR-3 and integrin α9. Furthermore, we also found VEGF-D/VEGFR-3 and VEGF-D/ integrin α9 signaling play an important role in LAM-associated lymphangiogenesis.


2020 ◽  
Author(s):  
Jiaxing Wang ◽  
Ping Long ◽  
Shengnan Tian ◽  
Weihua Zu ◽  
Jing Liu ◽  
...  

Abstract Background Extravillous trophoblast (EVT) cells play an essential role in the maternal-fetal interaction. Although abnormal development and function of EVT cells, including impaired migration and invasion capability, are believed to be etiologically linked to severe pregnancy disorders including pre-eclampsia (PE), the associated molecular mechanisms are not clear ascribed to the lack of an appropriate cell model in vitro. Cyclosporine A (CsA) is a macrolide immunosuppressant and is also used in clinic to improve pregnancy outcomes. However, whether CsA has any effects on the function of EVT cells has not been well investigated. Methods In this study, we induced differentiation of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) into EVT cells (hiPSC-EVT and hESC-EVT cells, respectively) by Y27632, NRG1, A83-01 and matrigel, and collected these derived EVT cells by flow cytometry for sorting cells positive for double HLA-G and KRT7, which are EVT markers. We then investigated the effects of CsA on the invasion and migration of these derived EVT cells. Results We found that the hiPSC-EVT and hESC-EVT cells expressed high levels of the EVT markers such as KRT7, ITGA5 and HLA-G but low levels of OCT4, a stem cell marker, and that CsA significantly promoted the invasion and migration of hiPSC-EVT and hESC-EVT cells. Conclusions We successfully generated hiPSC/hESC-derived human EVT cells, which may be applicable for investigating the remodeling process of spiral arteries remodeling and the possible mechanisms of EVT-related diseases in vitro. Furthermore, our findings provide direct evidence that CsA regulates the function of EVT cells and molecular basis by which CsA may be used to treat pregnancy complications in clinic associated with deficient EVT function.


Sign in / Sign up

Export Citation Format

Share Document