scholarly journals Potential applications of aptamers in veterinary science

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Solène Niederlender ◽  
Jean-Jacques Fontaine ◽  
Grégory Karadjian

AbstractAptamers are small nucleic acids that fold in a three-dimensional conformation allowing them to bind specifically to a target. This target can be an organic molecule, free or carried in cells or tissues, or inorganic components, such as metal ions. Analogous to monoclonal antibodies, aptamers however have certain advantages over the latter: e.g., high specificity for their target, no to low immunogenicity and easy in vitro selection. Since their discovery more than 30 years ago, aptamers have led to various applications, although mainly restricted to basic research. This work reviews the applications of aptamers in veterinary science to date. First, we present aptamers, how they are selected and their properties, then we give examples of applications in food and environmental safety, as well as in diagnosis and medical treatment in the field of veterinary medicine. Because examples of applications in veterinary medicine are scarce, we explore the potential avenues for future applications based on discoveries made in human medicine. Aptamers may offer new possibilities for veterinarians to diagnose certain diseases—particularly infectious diseases—more rapidly or “at the patient’s bedside”. All the examples highlight the growing interest in aptamers and the premises of a potential market. Aptamers may benefit animals as well as their owners, breeders and even public health in a “One Health” approach.

2018 ◽  
Vol 19 (12) ◽  
pp. 3883 ◽  
Author(s):  
Jasmin Aldag ◽  
Tina Persson ◽  
Roland Hartmann

Lipopolysaccaride binding protein (LBP), a glycosylated acute phase protein, plays an important role in the pathophysiology of sepsis. LBP binds with high affinity to the lipid part of bacterial lipopolysaccaride (LPS). Inhibition of the LPS-LBP interaction or blockage of LBP-mediated transfer of LPS monomers to CD14 may be therapeutical strategies to prevent septic shock. LBP is also of interest as a biomarker to identify septic patients at high risk for death, as LBP levels are elevated during early stages of severe sepsis. As a first step toward such potential applications, we isolated aptamers specific for murine LBP (mLBP) by in vitro selection from a library containing a 60-nucleotide randomized region. Modified RNA pools were transcribed in the presence of 2′-fluoro-modified pyrimidine nucleotides to stabilize transcripts against nuclease degradation. As verified for one aptamer experimentally, the selected aptamers adopt a “three-helix junction” architecture, presenting single-stranded 7-nt (5′-YGCTTCY) or 6-nt (5′-RTTTCY) consensus sequences in their core. The best binder (aptamer A011; Kd of 270 nM for binding to mLBP), characterized in more detail by structure probing and boundary analysis, was demonstrated to bind with high specificity to murine LBP.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Mukund R. Shukla ◽  
Annaliese Kibler ◽  
Christina E. Turi ◽  
Lauren A. E. Erland ◽  
J. Alan Sullivan ◽  
...  

Tulsi (Ocimum sanctum L.) is a sacred plant of medicinal and spiritual significance in many cultures. Medicinal properties of Tulsi are ascribed to its phytochemicals with antioxidant capabilities. The current study was undertaken to screen a large seed population of Tulsi to select germplasm lines with high antioxidant potential and to standardize protocols for micropropagation and biomass production to produce a phytochemically consistent crop. A total of 80 germplasm lines were established under in vitro conditions and screened for their antioxidant potential determined with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) bioassay. The micropropagation of a selected line, named Vrinda, was established using nodal cultures grown on Murashige and Skoog medium containing benzylaminopurine (1.1 µM), gibberellic acid (0.3 µM), and activated charcoal (0.6%). The antioxidant phytohormones melatonin and serotonin were quantified in the field and greenhouse grown tissues of Vrinda and melatonin levels were found to be consistent in both conditions with higher serotonin levels under field conditions. This integrated approach combining the in vitro selection and propagation offers potential applications in the development of safe, effective, and novel natural health products of Tulsi, and many other medicinal plant species.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Yaqi Li ◽  
Peiyuan Tang ◽  
Sanjun Cai ◽  
Junjie Peng ◽  
Guoqiang Hua

AbstractThree-dimensional cultured organoids have become a powerful in vitro research tool that preserves genetic, phenotypic and behavioral trait of in vivo organs, which can be established from both pluripotent stem cells and adult stem cells. Organoids derived from adult stem cells can be established directly from diseased epithelium and matched normal tissues, and organoids can also be genetically manipulated by CRISPR-Cas9 technology. Applications of organoids in basic research involve the modeling of human development and diseases, including genetic, infectious and malignant diseases. Importantly, accumulating evidence suggests that biobanks of patient-derived organoids for many cancers and cystic fibrosis have great value for drug development and personalized medicine. In addition, organoids hold promise for regenerative medicine. In the present review, we discuss the applications of organoids in the basic and translational research.


2003 ◽  
Vol 77 (6) ◽  
pp. 3669-3679 ◽  
Author(s):  
Caterina Trozzi ◽  
Linda Bartholomew ◽  
Alessandra Ceccacci ◽  
Gabriella Biasiol ◽  
Laura Pacini ◽  
...  

ABSTRACT The hepatitis C virus (HCV) serine protease is necessary for viral replication and represents a valid target for developing new therapies for HCV infection. Potent and selective inhibitors of this enzyme have been identified and shown to inhibit HCV replication in tissue culture. The optimization of these inhibitors for clinical development would greatly benefit from in vitro systems for the identification and the study of resistant variants. We report the use HCV subgenomic replicons to isolate and characterize mutants resistant to a protease inhibitor. Taking advantage of the replicons' ability to transduce resistance to neomycin, we selected replicons with decreased sensitivity to the inhibitor by culturing the host cells in the presence of the inhibitor and neomycin. The selected replicons replicated to the same extent as those in parental cells. Sequence analysis followed by transfection of replicons containing isolated mutations revealed that resistance was mediated by amino acid substitutions in the protease. These results were confirmed by in vitro experiments with mutant enzymes and by modeling the inhibitor in the three-dimensional structure of the protease.


2019 ◽  
Vol 25 (3) ◽  
pp. 753-761 ◽  
Author(s):  
Warren Colomb ◽  
Matthew Osmond ◽  
Charles Durfee ◽  
Melissa D. Krebs ◽  
Susanta K. Sarkar

AbstractThe absence of quantitative in vitro cell–extracellular matrix models represents an important bottleneck for basic research and human health. Randomness of cellular distributions provides an opportunity for the development of a quantitative in vitro model. However, quantification of the randomness of random cell distributions is still lacking. In this paper, we have imaged cellular distributions in an alginate matrix using a multiview light sheet microscope and developed quantification metrics of randomness by modeling it as a Poisson process, a process that has constant probability of occurring in space or time. We imaged fluorescently labeled human mesenchymal stem cells embedded in an alginate matrix of thickness greater than 5 mm with $\sim\! {\rm 2}{\rm. 9} \pm {\rm 0}{\rm. 4}\,\mu {\rm m}$ axial resolution, the mean full width at half maximum of the axial intensity profiles of fluorescent particles. Simulated randomness agrees well with the experiments. Quantification of distributions and validation by simulations will enable quantitative study of cell–matrix interactions in tissue models.


2019 ◽  
Vol 5 (3) ◽  
Author(s):  
Sadman Sakib ◽  
Anna Voigt ◽  
Taylor Goldsmith ◽  
Ina Dobrinski

Abstract Organoids are three dimensional structures consisting of multiple cell types that recapitulate the cellular architecture and functionality of native organs. Over the last decade, the advent of organoid research has opened up many avenues for basic and translational studies. Following suit of other disciplines, research groups working in the field of male reproductive biology have started establishing and characterizing testicular organoids. The three-dimensional architectural and functional similarities of organoids to their tissue of origin facilitate study of complex cell interactions, tissue development and establishment of representative, scalable models for drug and toxicity screening. In this review, we discuss the current state of testicular organoid research, their advantages over conventional monolayer culture and their potential applications in the field of reproductive biology and toxicology.


2015 ◽  
Vol 5 (4) ◽  
pp. 20150038 ◽  
Author(s):  
Thibaut J. Lagny ◽  
Patricia Bassereau

Being at the periphery of each cell compartment and enclosing the entire cell while interacting with a large part of cell components, cell membranes participate in most of the cell's vital functions. Biologists have worked for a long time on deciphering how membranes are organized, how they contribute to trafficking, motility, cytokinesis, cell–cell communication, information transport, etc., using top-down approaches and always more advanced techniques. In contrast, physicists have developed bottom-up approaches and minimal model membrane systems of growing complexity in order to build up general models that explain how cell membranes work and how they interact with proteins, e.g. the cytoskeleton. We review the different model membrane systems that are currently available, and how they can help deciphering cell functioning, but also list their limitations. Model membrane systems are also used in synthetic biology and can have potential applications beyond basic research. We discuss the possible synergy between the development of complex in vitro membrane systems in a biological context and for technological applications. Questions that could also be discussed are: what can we still do with synthetic systems, where do we stop building up and which are the alternative solutions?


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 626 ◽  
Author(s):  
Adja B. R. Touré ◽  
Elisa Mele ◽  
Jamieson K. Christie

Three-dimensional (3D) printing has been combined with electrospinning to manufacture multi-layered polymer/glass scaffolds that possess multi-scale porosity, are mechanically robust, release bioactive compounds, degrade at a controlled rate and are biocompatible. Fibrous mats of poly (caprolactone) (PCL) and poly (glycerol sebacate) (PGS) have been directly electrospun on one side of 3D-printed grids of PCL-PGS blends containing bioactive glasses (BGs). The excellent adhesion between layers has resulted in composite scaffolds with a Young’s modulus of 240–310 MPa, higher than that of 3D-printed grids (125–280 MPa, without the electrospun layer). The scaffolds degraded in vitro by releasing PGS and BGs, reaching a weight loss of ~14% after 56 days of incubation. Although the hydrolysis of PGS resulted in the acidification of the buffer medium (to a pH of 5.3–5.4), the release of alkaline ions from the BGs balanced that out and brought the pH back to 6.0. Cytotoxicity tests performed on fibroblasts showed that the PCL-PGS-BGs constructs were biocompatible, with cell viability of above 125% at day 2. This study demonstrates the fabrication of systems with engineered properties by the synergy of diverse technologies and materials (organic and inorganic) for potential applications in tendon and ligament tissue engineering.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1046
Author(s):  
Juan David Ospina-Villa ◽  
Alondra Cisneros-Sarabia ◽  
Miryan Margot Sánchez-Jiménez ◽  
Laurence A. Marchat

Aptamers are single-stranded DNA or RNA sequences of 20–80 nucleotides that interact with different targets such as: proteins, ions, viruses, or toxins, through non-covalent interactions and their unique three-dimensional conformation. They are obtained in vitro by the systematic evolution of ligands by exponential enrichment (SELEX). Because of their ability of target recognition with high specificity and affinity, aptamers are usually compared to antibodies. However, they present many advantages that make them promising molecules for the development of new methods for the diagnosis and treatment of human diseases. In medical parasitology, aptamers also represent an attractive alternative for the implementation of new parasite detection methods, easy to apply in endemic regions. The aim of this study was to describe the current advances in the development of diagnostic tests based on aptamers in parasitology. For this, articles were selected following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, with specific inclusion and exclusion criteria. The 26 resulting articles deal with the use of aptamers for the detection of six important protozoa that affect human health. This systematic review clearly demonstrates the specificity, sensitivity and selectivity of aptamers and aptasensors, that certainly will soon become standard methods in medical parasitology.


Sign in / Sign up

Export Citation Format

Share Document