scholarly journals AKR1B10 promotes breast cancer cell proliferation and migration via the PI3K/AKT/NF-κB signaling pathway

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiayao Qu ◽  
Jia Li ◽  
Yaming Zhang ◽  
Rongzhang He ◽  
Xiangting Liu ◽  
...  

Abstract Background Aberrant expression of Aldo-Keto reductase family 1 member B10 (AKR1B10) was associated with tumor size and metastasis of breast cancer in our published preliminary studies. However, little is known about the detailed function and underlying molecular mechanism of AKR1B10 in the pathological process of breast cancer. Methods The relationship between elevated AKR1B10 expression and the overall survival and disease-free survival of breast cancer patients was analyzed by Kaplan–Meier Plotter database. Breast cancer cell lines overexpressing AKR1B10 (MCF-7/AKR1B10) and breast cancer cell lines with knockdown of AKR1B10 (BT-20/shAKR1B10) were constructed to analyze the impact of AKR1B10 expression on cell proliferation and migration of breast cancer. The expression levels of AKR1B10 were detected and compared in the breast cancer cell lines and tissues by RT-qPCR, western blot and immunohistochemistry. The proliferation of breast cancer cells was monitored by CCK8 cell proliferation assay, and the migration and invasion of breast cancer cells was observed by cell scratch test and transwell assay. The proliferation- and EMT-related proteins including cyclinD1, c-myc, Survivin, Twist, SNAI1, SLUG, ZEB1, E-cadherin, PI3K, p-PI3K, AKT, p-AKT, IKBα, p-IKBα, NF-κB p65, p-NF-κB p65 were detected by western blot in breast cancer cells. MCF-7/AKR1B10 cells were treated with LY294002, a PI3K inhibitor, to consider the impact of AKR1B10 overexpression on the PI3K/AKT/NF-κB signal cascade and the presence of NF-κB p65 in nuclear. In vivo tumor xenograft experiments were used to observe the role of AKR1B10 in breast cancer growth in mice. Results AKR1B10 expression was significantly greater in breast cancer tissue compared to paired non-cancerous tissue. The expression of AKR1B10 positively correlated with lymph node metastasis, tumor size, Ki67 expression, and p53 expression, but inversely correlated with overall and disease-free survival rates. Gene Ontology analysis showed that AKR1B10 activity contributes to cell proliferation. Overexpression of AKR1B10 facilitated the proliferation of MCF-7 cells, and induced the migration and invasion of MCF-7 cells in vitro in association with induction of epithelial-mesenchymal transition (EMT). Conversely, knockdown of AKR1B10 inhibited these effects in BT-20 cells. Mechanistically, AKR1B10 activated PI3K, AKT, and NF-κB p65, and induced nuclear translocation of NF-κB p65, and expression of proliferation-related proteins including c-myc, cyclinD1, Survivin, and EMT-related proteins including ZEB1, SLUG, Twist, but downregulated E-cadherin expression in MCF-7 cells. AKR1B10 silencing reduced the phosphorylation of PI3K, AKT, and NF-κB p65, the nuclear translocation of NF-κB p65, and the expression of proliferation- and migration-related proteins in BT-20 cells. LY294002, a PI3K inhibitor, attenuated the phosphorylation of PI3K, AKT, and NF-κB p65, and the nuclear translocation of NF-κB p65. In vivo tumor xenograft experiments confirmed that AKR1B10 promoted breast cancer growth in mice. Conclusions AKR1B10 promotes the proliferation, migration and invasion of breast cancer cells via the PI3K/AKT/NF-κB signaling pathway and represents a novel prognostic indicator as well as a potential therapeutic target in breast cancer.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiantian Tang ◽  
Guiying Wang ◽  
Sihua Liu ◽  
Zhaoxue Zhang ◽  
Chen Liu ◽  
...  

AbstractThe role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1196 ◽  
Author(s):  
Subhawat Subhawa ◽  
Teera Chewonarin ◽  
Ratana Banjerdpongchai

Houttuynia cordata Thunb. (HCT) and Piper ribesioides Wall. (PR) are common herbs that are widely distributed throughout East Asia and possess various biological properties including anti-cancer effects. However, in breast cancer, their mechanisms responsible for anti-carcinogenic effects have not been clarified yet. In this study, the inhibitory effects of HCT and PR ethanolic extracts on breast cancer cell proliferation, migration, invasion and apoptosis were examined. In MCF-7 and MDA-MB-231 cells, HCT and PR extracts at low concentrations can inhibit colony formation and induce G1 cell cycle arrest by downregulating cyclinD1 and CDK4 expression. Additionally, HCT and PR extracts also decreased the migration and invasion of both breast cancer cell lines through inhibition of MMP-2 and MMP-9 secretion. Moreover, the induction of apoptosis was observed in breast cancer cells treated with high concentrations of HCT and PR extracts. Not only stimulated caspases activity, but HCT and PR extracts also upregulated the expression of caspases and pro-apoptotic Bcl-2 family proteins in breast cancer cells. Altogether, these findings provide the rationale to further investigate the potential actions of HCT and PR extracts against breast cancer in vivo.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yaohua Fan ◽  
Yan Li ◽  
Yuzhang Zhu ◽  
Guiping Dai ◽  
Dongjuan Wu ◽  
...  

Objectives. Breast cancer is the most common malignant tumor among females, and miRNAs have been reported to play an important regulatory role in breast cancer progression. This study aimed to explore the function and underlying molecular mechanism of miR-301b-3p in breast cancer. Methods. Differential analysis and survival analysis were performed based on the data accessed from the TCGA-BRCA dataset for identification of the target miRNA. Bioinformatics analysis was conducted to predict the downstream target gene of the miRNA. Real-time quantitative PCR was carried out to detect the expression of miR-301b-3p and nuclear receptor subfamily 3 group C member 2 (NR3C2). Western blot was used to assess the protein expression of NR3C2. Cell counting kit-8 assay was performed to evaluate the proliferation of breast cancer cells. Transwell assay was conducted to determine the migratory and invasive abilities of breast cancer cells. Dual-luciferase reporter assay was employed to verify the targeting relationship between miR-301b-3p and NR3C2. Results. miR-301b-3p was elevated in breast cancer cell lines and promoted cell proliferation, migration, and invasion in terms of its biological function in breast cancer. NR3C2 was validated as a direct target of miR-301b-3p via bioinformatics analysis and dual-luciferase reporter assay, and NR3C2 was downregulated in breast cancer cell lines. The rescue experiment indicated that NR3C2 was involved in the mechanism by which miR-301b-3p regulated the malignant phenotype of breast cancer cells. Conclusion. The present study revealed for the first time that miR-301b-3p could foster breast cancer cell proliferation, migration, and invasion by targeting NR3C2, unveiling that miR-301b-3p is a novel carcinogen in breast cancer.


Author(s):  
Vic Hart ◽  
Marco Silipo ◽  
Swapna Satam ◽  
Hannah Gautrey ◽  
John Kirby ◽  
...  

AbstractIn this study, two novel alternative splice variants of HER2, named HER2-PI9 and HER2-I12, were identified in breast cancer cell lines and breast tumour tissues. Whilst HER2-P19 arises from the inclusion of an 117 bp cassette-exon of intron 9 of HER2, HER2-I12 results from intron 12 inclusion. In silico analyses were performed to predict the amino acid sequences of these two HER2 novel variants. To confirm their protein expression, plasmid vectors were generated and transfected into the HER2 negative breast cancer cell line, MCF-7. Additionally, their functional properties in oncogenic signalling were confirmed. Expression of HER2-PI9 and HER2-I12 was successful and matched the in silico predictions. Importantly, these splice variants can modulate the phosphorylation levels of extracellular signal-related kinase 1/2 (ERK1/2) and Akt/protein kinase B (Akt) signalling in MCF-7 breast cancer cells. Enhanced cellular proliferation, migration and invasion were observed in the case of the HER2-I12 expressing model. In human tissues and breast carcinoma tumours both variants were present. This study reveals two novel splice variants of HER2. Additionally, the potential biological activity for HER2-PI9 and HER2-I12 in breast cancer cells is also reported..


2019 ◽  
Vol 20 (15) ◽  
pp. 3616 ◽  
Author(s):  
Xinping Li ◽  
Siwei Deng ◽  
Xinyao Pang ◽  
Yixiao Song ◽  
Shiyu Luo ◽  
...  

Breast cancer, the most prevalent cancer type among women worldwide, remains incurable once metastatic. Long noncoding RNA (lncRNA) and microRNA (miRNA) play important roles in breast cancer by regulating specific genes or proteins. In this study, we found miR-133b was silenced in breast cancer cell lines and in breast cancer tissues, which predicted poor prognosis in breast cancer patients. We also confirmed that lncRNA NEAT1 was up-regulated in breast cancer and inhibited the expression of miR-133b, and identified the mitochondrial protein translocase of inner mitochondrial membrane 17 homolog A (TIMM17A) that serves as the target of miR-133b. Both miR-133b knockdown and TIMM17A overexpression in breast cancer cells promoted cell migration and invasion both in vitro and in vivo. In summary, our findings reveal that miR-133b plays a critical role in breast cancer cell metastasis by targeting TIMM17A. These findings may provide new insights into novel molecular therapeutic targets for breast cancer.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Thandi Mqoco ◽  
André Stander ◽  
Anna-Mart Engelbrecht ◽  
Anna M Joubert

Current chemotherapeutic agents have many side effects and are toxic to normal cells, providing impetus to identify agents that can effectively eliminate tumorigenic cells without damaging healthy cells. The aim of this study was to examine whether combining a novel BRD4 inhibitor, ITH-47, with the antimitotic estradiol analogue, ESE-15-ol, would have a synergistic effect on inhibiting the growth of two different breast cancer cell lines in vitro. Our docking and molecular dynamics studies showed that compared to JQ1, ITH-47 showed a similar binding mode with hydrogen bonds forming between the ligand nitrogens of the pyrazole, ASN99, and water of the BRD4 protein. Data from cell growth studies revealed that the GI50 of ITH-47 and ESE-15-ol after 48 hours of exposure was determined to be 15 μM and 70 nM, respectively, in metastatic MDA-MB-231 breast cancer cells. In tumorigenic MCF-7 breast cancer cells, the GI50 of ITH-47 and ESE-15-ol was 75 μM and 60 nM, respectively, after 48 hours of exposure. Furthermore, the combination of 7.5 μM and 14 nM of ITH-47 and ESE-15-ol, respectively, resulted in 50% growth inhibition of MDA-MB-231 cells resulting in a synergistic combination index (CI) of 0.7. Flow cytometry studies revealed that, compared to the control, combination-treated MDA-MB-231 cells had significantly more cells present in the sub-G1 phase and the combination treatment induced apoptosis in the MDA-MB-231 cells. Compared to vehicle-treated cells, the combination-treated cells showed decreased levels of the BRD4, as well as c-Myc protein after 48 hours of exposure. In combination, the selective BRD4 inhibitor, ITH-47, and ESE-15-ol synergistically inhibited the growth of MDA-MB-231 breast cancer cells, but not of the MCF-7 cell line. This study provides evidence that resistance to BRD4 inhibitors may be overcome by combining inhibitors with other compounds, which may have treatment potential for hormone-independent breast cancers.


2020 ◽  
pp. jbc.RA120.016345
Author(s):  
Qiong Wu ◽  
Cheng Zhang ◽  
Keren Zhang ◽  
Qiushi Chen ◽  
Sijin Wu ◽  
...  

GalNAc-type O-glycosylation, initially catalyzed by polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts), is one of the most abundant and complex post-translational modifications of proteins. Emerging evidence has proven that aberrant ppGalNAc-Ts are involved in malignant tumor transformation. However, the exact molecular functions of ppGalNAc-Ts are still unclear. Here, the role of one isoform, ppGalNAc-T4, in breast cancer cell lines was investigated. The expression of ppGalNAc-T4 was found to be negatively associated with migration of breast cancer cells. Loss-of function studies revealed that ppGalNAc-T4 attenuated the migration and invasion of breast cancer cells by inhibiting the epithelial-mesenchymal transition (EMT) process. Correspondingly, transforming growth factor beta (TGF-β) signaling, which is the upstream pathway of EMT, was impaired by ppGalNAc-T4 expression. ppGalNAc-T4 knock-out decreased O-GalNAc modification of TGF-β type Ⅰ and Ⅱ receptor (TβR Ⅰ and Ⅱ) and led to the elevation of TGF-β receptor dimerization and activity. Importantly, a peptide from TβR Ⅱ was first identified as the naked peptide substrate of ppGalNAc-T4 with a higher affinity than ppGalNAc-T2. Further, Ser31, corresponding to the extracellular domain of TβR Ⅱ, was identified as the O-GalNAcylation site upon in vitro glycosylation by ppGalNAc-T4. The O-GalNAc-deficient S31A mutation enhanced TGF-β signaling activity and EMT in breast cancer cells. Together, these results identified a novel mechanism of ppGalNAc-T4-catalyzed TGF-β receptors O-GalNAcylation that suppresses breast cancer cell migration and invasion via the EMT process. Targeting ppGalNAc-T4 may be a potential therapeutic strategy for breast cancer treatment.


1997 ◽  
Vol 82 (6) ◽  
pp. 1790-1798 ◽  
Author(s):  
Rama Natarajan ◽  
Robert Esworthy ◽  
Wei Bai ◽  
Jia-Li Gu ◽  
Sharon Wilczynski ◽  
...  

Abstract The interaction of growth factors, such as epidermal growth factor (EGF) with their receptors, on breast cancer cells can lead to the hydrolysis of phospholipids and release of fatty acids, such as arachidonic acid, which can be further metabolized by the lipoxygenase (LO) pathway. Several LO products have been shown to stimulate oncogenes and have mitogenic and chemotactic effects. In this study, we have evaluated the regulation of 12-LO activity and expression in breast cancer cells and tissues. Leukocyte-type 12-LO messenger RNA (mRNA) expression was studied by a specific RT-PCR method in matched, normal, uninvolved and cancer-involved breast tissue RNA samples from six patients. In each of these six patients, the cancer-involved section showed a much higher level of 12-LO mRNA than the corresponding normal section. 12-LO mRNA levels also were greater in two breast cancer cell lines, MCF-7 and COH-BR1, compared with the nontumorigenic breast epithelial cell line, MCF-10F. The growth of the MCF-7 cells was significantly inhibited by two specific LO blockers but not by a cyclooxygenase blocker. Treatment of serum-starved MCF-7 cells with EGF for 4 h led to a dose-dependent increase in the formation of the 12-LO product, 12-hydroxyeicosatetraenoic acid. EGF treatment also increased the levels of the leukocyte-type 12-LO protein expression at 24 h. These results suggest that activation of the 12-LO pathway may play a key role in basal and EGF-induced breast cancer cell growth.


2014 ◽  
Vol 35 (1) ◽  
pp. 76-87 ◽  
Author(s):  
Afnan Abu-Thuraia ◽  
Rosemarie Gauthier ◽  
Rony Chidiac ◽  
Yoshinori Fukui ◽  
Robert A. Screaton ◽  
...  

The receptor tyrosine kinase Axl contributes to cell migration and invasion. Expression of Axl correlates with metastatic progression in cancer patients, yet the specific signaling events promoting invasion downstream of Axl are poorly defined. Herein, we report Elmo scaffolds to be direct substrates and binding partners of Axl. Elmo proteins are established to interact with Dock family guanine nucleotide exchange factors to control Rac-mediated cytoskeletal dynamics. Proteomics and mutagenesis studies reveal that Axl phosphorylates Elmo1/2 on a conserved carboxyl-terminal tyrosine residue. Upon Gas6-dependent activation of Axl, endogenous Elmo2 becomes phosphorylated on Tyr-713 and enters into a physical complex with Axl in breast cancer cells. Interfering with Elmo2 expression prevented Gas6-induced Rac1 activation in breast cancer cells. Similarly to blocking of Axl, Elmo2 knockdown or pharmacological inhibition of Dock1 abolishes breast cancer cell invasion. Interestingly, Axl or Elmo2 knockdown diminishes breast cancer cell proliferation. Rescue of Elmo2 knockdown cells with the wild-type protein but not with Elmo2 harboring Tyr-713-Phe mutations restores cell invasion and cell proliferation. These results define a new mechanism by which Axl promotes cell proliferation and invasion and identifies inhibition of the Elmo-Dock pathway as a potential therapeutic target to stop Axl-induced metastases.


Oncogene ◽  
2021 ◽  
Author(s):  
Anxo Martínez-Ordoñez ◽  
Samuel Seoane ◽  
Leandro Avila ◽  
Noemi Eiro ◽  
Manuel Macía ◽  
...  

AbstractMetabolic reprogramming is considered hallmarks of cancer. Aerobic glycolysis in tumors cells has been well-known for almost a century, but specific factors that regulate lactate generation and the effects of lactate in both cancer cells and stroma are not yet well understood. In the present study using breast cancer cell lines, human primary cultures of breast tumors, and immune deficient murine models, we demonstrate that the POU1F1 transcription factor is functionally and clinically related to both metabolic reprogramming in breast cancer cells and fibroblasts activation. Mechanistically, we demonstrate that POU1F1 transcriptionally regulates the lactate dehydrogenase A (LDHA) gene. LDHA catalyzes pyruvate into lactate instead of leading into the tricarboxylic acid cycle. Lactate increases breast cancer cell proliferation, migration, and invasion. In addition, it activates normal-associated fibroblasts (NAFs) into cancer-associated fibroblasts (CAFs). Conversely, LDHA knockdown in breast cancer cells that overexpress POU1F1 decreases tumor volume and [18F]FDG uptake in tumor xenografts of mice. Clinically, POU1F1 and LDHA expression correlate with relapse- and metastasis-free survival. Our data indicate that POU1F1 induces a metabolic reprogramming through LDHA regulation in human breast tumor cells, modifying the phenotype of both cancer cells and fibroblasts to promote cancer progression.


Sign in / Sign up

Export Citation Format

Share Document