scholarly journals Therapeutic targeting of Lyn kinase to treat chorea-acanthocytosis

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kevin Peikert ◽  
Enrica Federti ◽  
Alessandro Matte ◽  
Gabriela Constantin ◽  
Enrica Caterina Pietronigro ◽  
...  

AbstractChorea-Acanthocytosis (ChAc) is a devastating, little understood, and currently untreatable neurodegenerative disease caused by VPS13A mutations. Based on our recent demonstration that accumulation of activated Lyn tyrosine kinase is a key pathophysiological event in human ChAc cells, we took advantage of Vps13a−/− mice, which phenocopied human ChAc. Using proteomic approach, we found accumulation of active Lyn, γ-synuclein and phospho-tau proteins in Vps13a−/− basal ganglia secondary to impaired autophagy leading to neuroinflammation. Mice double knockout Vps13a−/− Lyn−/− showed normalization of red cell morphology and improvement of autophagy in basal ganglia. We then in vivo tested pharmacologic inhibitors of Lyn: dasatinib and nilotinib. Dasatinib failed to cross the mouse brain blood barrier (BBB), but the more specific Lyn kinase inhibitor nilotinib, crosses the BBB. Nilotinib ameliorates both Vps13a−/− hematological and neurological phenotypes, improving autophagy and preventing neuroinflammation. Our data support the proposal to repurpose nilotinib as new therapeutic option for ChAc patients.

2021 ◽  
Vol 12 ◽  
Author(s):  
Ming Ji ◽  
Zhihui Zhang ◽  
Songwen Lin ◽  
Chunyang Wang ◽  
Jing Jin ◽  
...  

Glioblastoma multiforme (GBM) is the most common malignant tumor of the central nervous system. Temozolomide (TMZ)–based adjuvant treatment has improved overall survival, but clinical outcomes remain poor; TMZ resistance is one of the main reasons for this. Here, we report a new phosphatidylinositide 3-kinase inhibitor, XH30; this study aimed to assess the antitumor activity of this compound against TMZ-resistant GBM. XH30 inhibited cell proliferation in TMZ-resistant GBM cells (U251/TMZ and T98G) and induced cell cycle arrest in the G1 phase. In an orthotopic mouse model, XH30 suppressed TMZ-resistant tumor growth. XH30 was also shown to enhance TMZ cytotoxicity both in vitro and in vivo. Mechanistically, the synergistic effect of XH30 may be attributed to its repression of the key transcription factor GLI1 via the noncanonical hedgehog signaling pathway. XH30 reversed sonic hedgehog–triggered GLI1 activation and decreased GLI1 activation by insulin-like growth factor 1 via the noncanonical hedgehog signaling pathway. These results indicate that XH30 may represent a novel therapeutic option for TMZ-resistant GBM.


2020 ◽  
Author(s):  
Jiandong Sun ◽  
Yilin Wang ◽  
Lirong Sun

Abstract Background Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm. INNO-406 is a novel tyrosine kinase inhibitor (TKI) that possess specific Lyn kinase inhibitory activity with no or limited activity against other sarcoma (Src) family member kinases. The present study aimed to confirm the anti-tumor effect of INNO-406 on CML cells, and elucidate the molecular mechanism underlying its effect. Methods The cell proliferation and apoptosis were detected by MTT, western blot and flow cytometry respectively. Results As suggested by the findings, INNO-406 significantly inhibited the proliferation and induced apoptosis of CML cells. In addition, INNO-406 promoted the expression level of PETN. Rescue experiment revealed that PTEN knockdown reversed the effect of INNO-406 which indicated the correlation between INNO-406 and PTEN. Further study determined that PTEN inhibited the phosphorylation of AKT and 4EBP1 and subsequently altered the expression of apoptotic protein expressions including bax, cytochrome c (cyto-c), cleaved caspase3 and bcl-2. In vivo study further confirmed that INNO-406 inhibited the growth of CML cells in vivo by targeting PTEN. Conclusion Based on the above findings, this work extended our understanding of INNO-406 in the chemotherapy of CML and its molecular mechanism.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1522-1522
Author(s):  
Shinya Kimura ◽  
Haruna Naito ◽  
Asumi Yokota ◽  
Yuri Kamitsuji ◽  
Eri Kawata ◽  
...  

Abstract Chemical modifications of imatinib mesylate made with the guidance of molecular modeling yielded several promising compounds. Among them, we selected a compound denoted NS-187 (elsewhere described as CNS-9) on the basis of its affinity to Abl, and also to Lyn, which may be involved in imatinib-resistance (Figure). The most striking structural characteristic of NS-187 is its trifluoromethyl (CF3) group at position 3 of the benzamide ring. The presence of the CF3 group strengthened the hydrophobic interactionss of the molecule with the hydrophobic pocket of Abl. Another possible merit of the CF3 group is that it may fix the conformation of the drug by hindering its rotation at the 4-position of the benzamide ring; as a result, a CF3-bearing molecule may be more potent than more flexible compounds such as imatinib. In fact, NS-187 was 25–55 times more potent than imatinib in vitro and and at least 10 times more potent than in vivo. NS-187 also inhibited the phosphorylation and growth of all Bcr-Abl mutants tested except T315I at physiological concentrations. Another special feature of NS-187, in addition to its increased affinity to Abl is its unique spectrum of inhibitory activity against protein kinases. At a concentration of 0.1 μM, NS-187 inhibited only four of 79 tyrosine kinases, that is, Abl, Arg, Fyn, and Lyn. Notably, at 0.1 μM NS-187 did not inhibit PDGFR, Blk, Src or Yes. The IC50 values of NS-187 for Abl, Src and Lyn were 5.8 nM, 1700 nM and 19 nM, respectively, and those of imatinib were 106 nM, >10,000 nM and 352 nM, respectively. These findings indicate that NS-187 acts as a Bcr-Abl/Lyn inhibitor. In this respect, NS-187 may stand out among other novel Abl tyrosine kinase inhibitors, because BMS-354825 inhibits all members of the Src family, while AMN-107 inhibits none of the Src-family kinases. Our proposed docking models of the NS-187/Abl complex support the notion that NS-187 is more specific for Lyn than for Src. The amino acid at position 252 is either Gln or Cys in Src-family proteins. NS-187 inhibited the Gln252-bearing proteins Abl, Fyn and Lyn but had lower activity against the Cys252-bearing Src and Yes. This is probably because Gln, unlike Cys, readily forms hydrogen bonds. The distinguishing characteristic of NS-187, its high affinity for and specific inhibition of Abl and Lyn, may be useful in the treatment of Bcr-Abl-positive leukemia patients. Figure Figure


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yan Lin ◽  
Keming Wang ◽  
Chunping Hu ◽  
Lin Lin ◽  
Shukui Qin ◽  
...  

Elemene, a compound found in an herb used in traditional Chinese medicine, has shown promising anticancer effects against a broad spectrum of tumors. In anin vivoexperiment, we found that apatinib, a tyrosine kinase inhibitor that selectively inhibits VEGFR2, combined with elemene injection (Ele) for the treatment of H22 solid tumor in mice resulted in worse effectiveness than apatinib alone. Moreover, Ele could protect HepG2 cells from death induced by serum-free starvation. Further data on the mechanism study revealed that Ele induced protective autophagy and prevented human hepatoma cancer cells from undergoing apoptosis. Proapoptosis effect of Ele was enhanced when proautophagy effect was inhibited by hydroxychloroquine. Above all, Ele has the effect of protecting cancer cells from death either in apatinib induced nutrient deficient environment or in serum-free induced starvation. A combination of elemene injection with autophagy inhibitor might thus be a useful therapeutic option for hepatocellular carcinoma.


2020 ◽  
Vol 26 (22) ◽  
pp. 2610-2619 ◽  
Author(s):  
Tarique Hussain ◽  
Ghulam Murtaza ◽  
Huansheng Yang ◽  
Muhammad S. Kalhoro ◽  
Dildar H. Kalhoro

Background: Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. Methods: This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. Results: Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. Conclusion: Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.


2021 ◽  
Vol 14 (1) ◽  
pp. 38
Author(s):  
Hyo Jeong Lee ◽  
Pyeonghwa Jeong ◽  
Yeongyu Moon ◽  
Jungil Choi ◽  
Jeong Doo Heo ◽  
...  

Rearranged during transfection (RET), a receptor tyrosine kinase, is activated by glial cell line-derived neurotrophic factor family ligands. Chromosomal rearrangement or point mutations in RET are observed in patients with papillary thyroid and medullary thyroid carcinomas. Oncogenic alteration of RET results in constitutive activation of RET activity. Therefore, inhibiting RET activity has become a target in thyroid cancer therapy. Here, the anti-tumor activity of a novel RET inhibitor was characterized in medullary thyroid carcinoma cells. The indirubin derivative LDD-2633 was tested for RET kinase inhibitory activity. In vitro, LDD-2633 showed potent inhibition of RET kinase activity, with an IC50 of 4.42 nM. The growth of TT thyroid carcinoma cells harboring an RET mutation was suppressed by LDD-2633 treatment via the proliferation suppression and the induction of apoptosis. The effects of LDD-2633 on the RET signaling pathway were examined; LDD-2633 inhibited the phosphorylation of the RET protein and the downstream molecules Shc and ERK1/2. Oral administration of 20 or 40 mg/kg of LDD-2633 induced dose-dependent suppression of TT cell xenograft tumor growth. The in vivo and in vitro experimental results supported the potential use of LDD-2633 as an anticancer drug for thyroid cancers.


2021 ◽  
Vol 22 (4) ◽  
pp. 1985
Author(s):  
Xiaohe Li ◽  
Ling Ma ◽  
Kai Huang ◽  
Yuli Wei ◽  
Shida Long ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a fatal and age-related pulmonary disease. Nintedanib is a receptor tyrosine kinase inhibitor, and one of the only two listed drugs against IPF. Regorafenib is a novel, orally active, multi-kinase inhibitor that has similar targets to nintedanib and is applied to treat colorectal cancer and gastrointestinal stromal tumors in patients. In this study, we first identified that regorafenib could alleviate bleomycin-induced pulmonary fibrosis in mice. The in vivo experiments indicated that regorafenib suppresses collagen accumulation and myofibroblast activation. Further in vitro mechanism studies showed that regorafenib inhibits the activation and migration of myofibroblasts and extracellular matrix production, mainly through suppressing the transforming growth factor (TGF)-β1/Smad and non-Smad signaling pathways. In vitro studies have also indicated that regorafenib could augment autophagy in myofibroblasts by suppressing TGF-β1/mTOR (mechanistic target of rapamycin) signaling, and could promote apoptosis in myofibroblasts. In conclusion, regorafenib attenuates bleomycin-induced pulmonary fibrosis by suppressing the TGF-β1 signaling pathway.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Keya Li ◽  
Xinyue Li ◽  
Guiying Shi ◽  
Xuepei Lei ◽  
Yiying Huang ◽  
...  

AbstractAnimal models provide an opportunity to assess the optimal treatment way and the underlying mechanisms of direct clinical application of adipose-derived stem cells (ADSCs). Previous studies have evaluated the effects of primitive and induced ADSCs in animal models of Parkinson’s disease (PD). Here, eight databases were systematically searched for studies on the effects and in vivo changes caused by ADSC intervention. Quality assessment was conducted using a 10-item risk of bias tool. For the subsequent meta-analysis, study characteristics were extracted and effect sizes were computed. Ten out of 2324 published articles (n = 169 animals) were selected for further meta-analysis. After ADSC therapy, the rotation behavior (10 experiments, n = 156 animals) and rotarod performance (3 experiments, n = 54 animals) were improved (P < 0.000 01 and P = 0.000 3, respectively). The rotation behavior test reflected functional recovery, which may be due to the neurogenesis from neuronally differentiated ADSCs, resulting in a higher pooled effect size of standard mean difference (SMD) (− 2.59; 95% CI, − 3.57 to − 1.61) when compared to that of primitive cells (− 2.18; 95% CI, − 3.29 to − 1.07). Stratified analyses by different time intervals indicated that ADSC intervention exhibited a long-term effect. Following the transplantation of ADSCs, tyrosine hydroxylase-positive neurons recovered in the lesion area with pooled SMD of 13.36 [6.85, 19.86]. Transplantation of ADSCs is a therapeutic option that shows long-lasting effects in animal models of PD. The potential mechanisms of ADSCs involve neurogenesis and neuroprotective effects. The standardized induction of neural form of transplanted ADSCs can lead to a future application in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document