scholarly journals Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering

2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Mona Sari ◽  
Puspa Hening ◽  
Chotimah ◽  
Ika Dewi Ana ◽  
Yusril Yusuf

Abstract Background The application of bioceramic hydroxyapatite (HA) derived from materials high in calcium to tissue engineering has been of concern, namely scaffold. Scaffold pores allow for cell mobility metabolic processes, and delivery of oxygen and nutrients by blood vessel. Thus, pore architecture affects cell seeding efficiency, cell viability, migration, morphology, cell proliferation, cell differentiation, angiogenesis, mechanical strength of scaffolds, and, eventually, bone formation. Therefore, to improve the efficacy of bone regeneration, several important parameters of the pore architecture of scaffolds must be carefully controlled, including pore size, geometry, orientation, uniformity, interconnectivity, and porosity, which are interrelated and whose coordination affects the effectiveness of bone tissue engineering. The honeycomb (HCB) as natural polymeric porogen is used to pore forming agent of scaffolds. It is unique for fully interconnected and oriented pores of uniform size and high mechanical strength in the direction of the pores. The aim of this study was therefore to evaluate the effect of HCB concentration on macropore structure of the scaffolds. Methods Bioceramic hydroxyapatite (HA) was synthesized from abalone mussel shells (Halioitis asinina) using a precipitation method, and HA-based scaffolds were fabricated with honeycomb (HCB) as the porogen agent. Pore structure engineering was successfully carried out using HCB at concentrations of 10, 20, and 30 wt%. Results The Energy Dispersive X-Ray Spectroscopy (EDS) analysis revealed that the Ca/P molar ratio of HA was 1.67 (the stoichiometric ratio of HA). The Fourier Transform Infrared Spectroscopy (FTIR) spectra results for porous HA-based scaffolds and synthesized HA showed that no chemical decomposition occurred in the HA-based scaffold fabrication process. The porosity of the scaffold tended to increase when higher concentrations of HCB were added. XRD data show that the HCB was completely degraded from the scaffold material. The cell metabolic activity and morphology of the HA + HCB 30 wt% scaffold enable it to facilitate the attachment of MC3T3E1 cells on its surface. Conclusion HCB 30 wt% is the best concentration to fabricate the scaffold corresponding to the criteria for pores structure, crystallographic properties, chemical decomposition process and cell viability for bone tissue engineering.

Bioimpacts ◽  
2021 ◽  
Author(s):  
Azam Bozorgi ◽  
Masoud Mozafari ◽  
Mozafar Khazaei ◽  
Mansooreh Soleimani ◽  
Zahra Jamalpoor

Introduction: Fabricating composite scaffolds with improved physicochemical properties as artificial microenvironments are of great interest in bone tissue engineering. Given advantageous properties of nano-hydroxyapatite/chitosan/gelatin (nHA/Cs/Gel) scaffolds, the present study aimed to synthesize a modified nHA/Cs/Gel biomimetic scaffold with improved features. Methods: Pure and copper (Cu)-substituted nHA was synthesized using the chemical precipitation method under controlled pH and temperature. Pure and Cu-substituted nHA/Cs/Gel scaffolds were fabricated by salt-leaching/freeze-drying method. Physicochemical characteristics of nanoparticles and scaffolds were explored using XRD, FTIR, FE-SEM/EDX, and ICP. Besides, scaffold mechanical strength, degradation, porosity, swelling, biomineralization, and cytocompatibility were assessed. Results: Pure and Cu-substituted nHA were synthesized and characterized with appropriate Cu substitution and improved physical properties. All scaffolds were highly porous (porosity >98%) and Cu incorporation reduced porosity from 99.555 ± 0.394% to 98.69 ± 0.80% while enlarged the pore size to more than100 µm. Cu-substitution improved the scaffold mechanical strength and the best result was observed in nHA.Cu5%/Cs/Gel scaffolds by the compressive strength 88.869 ± 19.574 MPa. Furthermore, 3% and 5% Cu-substituted nHA enhanced the scaffold structural stability and supported osteoblast spread, adhesion, survival, mineralization, and proliferation. Moreover, long-term and sustainable Cu release from scaffolds was observed within 28 days. Conclusion: Cu-substituted nHA/Cs/Gel scaffolds mimic the porous structure and mechanical strength of cancellous bone, along with prolonged degradation and Cu release, osteoblast attachment, viability, calcium deposition, and proliferation. Taken together, our results indicate the upgraded properties of nHA.Cu5%/Cs/Gel scaffolds for future applications in bone tissue engineering.


2016 ◽  
Vol 23 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Weizhong Yang ◽  
Yong Yi ◽  
Yuan Ma ◽  
Li Zhang ◽  
Jianwen Gu ◽  
...  

AbstractNano biphasic calcium phosphate (BCP) particles were synthesized using the sol-gel method. As-prepared BCP particles were combined with poly-L-lactide (PLLA) to fabricate nano-BCP/PLLA composite scaffold through a series of processing steps containing solvent self-diffusion, hot-pressing, and particulate leaching. The composite had a suitable porous structure for bone tissue engineering scaffold. In comparison, micro-BCP/PLLA scaffold was studied as well. Nano-BCP particles were distributed homogeneously in the PLLA matrix, and much more tiny crystallites exposed on the surface of the pore wall. Due to the finer inorganic particle distribution in the PLLA phase and the larger area of the bioactive phase exposed in the pore wall surface, nano-BCP/PLLA scaffold had enhanced compressive strength, good bioactivity, and superior cell viability. A nonstoichiometric apatite layer could be rapidly formed on the surface of nano- BCP/PLLA when soaked in simulated body fluid. The MG-63 cell viability of nano-BCP/PLLA scaffold is significantly higher than that of micro-BCP/PLLA scaffold. Therefore, nano-BCP/PLLA composite may be a suitable alternative for bone tissue engineering scaffold.


Author(s):  
Bingbing Li ◽  
Bani Davod Hesar ◽  
Yiwen Zhao ◽  
Li Ding

Pore size, external shape, and internal complexity of additively manufactured porous titanium scaffolds are three primary determinants of cell viability and structural strength of scaffolds in bone tissue engineering. To obtain an optimal design with the combination of all three determinants, four scaffolds each with a unique topology (external geometry and internal structure) were designed and varied the pore sizes of each scaffold 3 times. For each topology, scaffolds with pore sizes of 300, 400, and 500 µm were designed. All designed scaffolds were additively manufactured in material Ti6Al4V by the direct metal laser melting machine. Compression test was conducted on the scaffolds to assure meeting minimum compressive strength of human bone. The effects of pore size and topology on the cell viability of the scaffolds were analyzed. The 12 scaffolds were ultrasonically cleaned and seeded with NIH3T3 cells. Each scaffold was seeded with 1 million cells. After 32 days of culturing, the cells were fixed for their three-dimensional architecture preservation and to obtain scanning electron microscope images.


2013 ◽  
Vol 849 ◽  
pp. 151-156 ◽  
Author(s):  
Tarin Sukhachiradet ◽  
Wassanai Wattanutchariya

Autograft is a general method used in orthopedic surgery for a bone replacement. However, the disadvantage of this method is the amount of risk factor to the donor sites. Currently, bone tissue engineering is another technique that could be implemented to solve this problem. Artificial bone scaffold generated by bone tissue engineering can be employed in order to accelerate damaged bone regeneration. In fact, this scaffold can be fabricated from synthetic contents such as bioceramics, biopolymers or composite. Three types of biomaterials: Chitosan, Hydroxyapatite (HA) and Fibroin were used to form porous scaffold. This research investigated the preparation of Hydroxyapatite and Fibroin from natural materials. Hydroxyapatite was synthesized from mollusk shell by wet chemical precipitation method. While, Fibroin was extracted from silk worms cocoons. Freeze drying method was employed to fabricate this composite porous scaffold. A mixing ratio of 1:2:1 among Fibroin: Chitosan: HA was studied to evaluate biodegradability, biocompatibility, porosity and pore structure of the output scaffolds. Results show that the output scaffolds have an interconnected porous structure with a pore size around 150-200μm and an average porosity of 94.26%. While the average degradation rate of the scaffold in lysozyme was 10.46% at 7 days. In addition, the biocompatibility test based on XTT assay test, shown that the scaffolds were non-cytotoxicity, which could be good for bone filling application in the future.


Author(s):  
Masud Rana Md. ◽  
Naznin Akhtar ◽  
Zahid Hasan Md. ◽  
Asaduzzaman S M

Bone tissue engineering with cells and synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissue compared with the transplantation of bone. Hydroxyapatite (HA) and its composite with biopolymer are extensively developed and applied in bone tissue regeneration. The main aim of this study was to fabricate and characterize of HA apatite based biocompatible scaffold for bone tissue engineering. Scaffolds with different ratio of polymers (chitosan & alginate), and fixed amount of synthetic HA were prepared using in situ co precipitation method and mineral to polymer ratio was 1:1 to 1: 2 . A cross linker agent, 2-Hydroxylmethacrylate (HEMA) was added at different percentage (0.5-2%) into the selected composition and irradiated at 5- 25 kGy to optimize the proper mixing of components at the presence of HEMA. Fabricated scaffolds were analyzed to determine porosity, density, biodegradability, morphology and structural properties. Porosity and density of the prepared scaffold were 75 to 92% and 0.21 to 0.42 g/cm3 respectively. However, the swelling ratio of the fabricated scaffolds was ranged from 133 to 197%. Nonetheless, there had a reasonable in-vitro degradation of prepared scaffolds. Flourier transform infrared spectroscopy (FTIR) analysis showed intermolecular interaction between components in the scaffold. Pore size of scaffold was measured by scanning electron microscope and the value was 162-510 μm. It could be proposed that this scaffold fulfills all the main requirements to be considered as a bone substitute for biomedical application in near future.


2021 ◽  
Author(s):  
Chunhua Gong ◽  
Haixia Tang ◽  
Yanbo Wu ◽  
Juan Guo ◽  
Ruixue Guo ◽  
...  

Abstract In this paper, chitosan/hydroxyapatite (CS/n-HA) were synthesized by ultrasound-assisted precipitation combined with inverse crosslinking-emulsion method. In order to obtain a scaffold material with excellent properties, Calcium sulfate hemihydrate (CSH) were combined with CS-HA obtained CSH/CS/n-HA composite scaffold via setting citric acid as solidifying liquid, which possessed better biodegradability, bioactivity, mechanical properties. The physicochemical, morphological properties of scaffolds were characterized by FTIR, XRD and TFSEM. In addition, explored were the mechanical, degradable, biocompatibility and iron release properties. The mechanical strength study indicated that the compressive strength of the porous composite scaffold was influenced by adding an appropriate amount of CS/n-HA composite microspheres. It was proved that the composite scaffold with 6% CS/n-HA content obtained the highest mechanical strength (17.46±1.29 MPa). The results illustrated that the composite scaffold possessed biodegradability and can form hydroxyapatite by dynamic balance of Ca and P elements. The hemolysis tests demonstrate that materials are non-hemolytic and have good blood compatibility. Therefore, the developed composite scaffolds are safe medical inorganic materials, which can potentially be applied in bone tissue engineering.


2009 ◽  
Vol 79-82 ◽  
pp. 401-404 ◽  
Author(s):  
Bin Li ◽  
Xin Bo Wang ◽  
Jin Huan Ma ◽  
Long Nan Huang

In this work, the PCS/CS/HA composites with different weight ratios were prepared through a co-precipitation method. The properties of these composites were characterized by means of the XRD, the IR, the SEM and the bending strength test. The value of bending strength of the PCS/CS/ HA composite with a weight ratio of 10/30/60 was measured about 34.93 MPa which is 1.6 times high of the cancellous bone. The composite is appropriate to be used as materials for bone tissue engineering.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mengchao Shi ◽  
Dong Zhai ◽  
Lang Zhao ◽  
Chengtie Wu ◽  
Jiang Chang

It is of great importance to prepare multifunctional scaffolds combining good mechanical strength, bioactivity, and drug delivery ability for bone tissue engineering. In this study, nanosized mesoporous bioglass/poly(lactic-co-glycolic acid) composite-coated calcium silicate scaffolds, named NMBG-PLGA/CS, were successfully prepared. The morphology and structure of the prepared scaffolds were characterized by scanning electron microscopy and X-ray diffraction. The effects of NMBG on the apatite mineralization activity and mechanical strength of the scaffolds and the attachment, proliferation, and alkaline phosphatase activity of MC3T3 cells as well as drug ibuprofen delivery properties were systematically studied. Compared to pure CS scaffolds and PLGA/CS scaffolds, the prepared NMBG-PLGA/CS scaffolds had greatly improved apatite mineralization activity in simulated body fluids, much higher mechanical property, and supported the attachment of MC3T3 cells and enhanced the cell proliferation and ALP activity. Furthermore, the prepared NMBG-PLGA/CS scaffolds could be used for delivering ibuprofen with a sustained release profile. Our study suggests that the prepared NMBG-PLGA/CS scaffolds have improved physicochemical, biological, and drug-delivery property as compared to conventional CS scaffolds, indicating that the multifunctional property of the prepared scaffolds for the potential application of bone tissue engineering.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 599
Author(s):  
Gustavo A. Rico-Llanos ◽  
Sara Borrego-González ◽  
Miguelangel Moncayo-Donoso ◽  
José Becerra ◽  
Rick Visser

Collagen type I is the main organic constituent of the bone extracellular matrix and has been used for decades as scaffolding material in bone tissue engineering approaches when autografts are not feasible. Polymeric collagen can be easily isolated from various animal sources and can be processed in a great number of ways to manufacture biomaterials in the form of sponges, particles, or hydrogels, among others, for different applications. Despite its great biocompatibility and osteoconductivity, collagen type I also has some drawbacks, such as its high biodegradability, low mechanical strength, and lack of osteoinductive activity. Therefore, many attempts have been made to improve the collagen type I-based implants for bone tissue engineering. This review aims to summarize the current status of collagen type I as a biomaterial for bone tissue engineering, as well as to highlight some of the main efforts that have been made recently towards designing and producing collagen implants to improve bone regeneration.


Sign in / Sign up

Export Citation Format

Share Document