scholarly journals Fly ash-based geopolymers: an emerging sustainable solution for heavy metal remediation from aqueous medium

Author(s):  
Piyush Gupta ◽  
Garima Nagpal ◽  
Namrata Gupta

Abstract Background The water supplies are hindered because aquatic resources have constrained with natural and man-made pollution activities in terms of releasing huge amounts of contaminants from different point and non-point sources across the globe. The industries like metal plating, batteries, paint, fertilizers, tanneries, textile industries, dyeing industries, mining operations, and paper industries discharge their effluents into the environment directly or indirectly, and hence, they are considered as the key sources of heavy metals contamination in water resources. Heavy metals are inorganic, non-biodegradable, persistent, and having a tendency to get accumulated in biotic and abiotic components of environment as compared to organic pollutants. Some heavy metal cations, for example, mercury, arsenic, cadmium, zinc, lead, nickel, copper, and chromium, are carcinogenic in nature and so, lethal. There are growing health concerns due to toxic impacts of heavy metals on every genre of ecosystem. To deal with the bottleneck situation, it is highly imperative to search a feasible solution for heavy metal remediation in water in context of preventing amalgamation of noxious contaminants in food web. Different methods are exercised for the remediation of such impurities from its solutions. One method, i.e. adsorption is found to be the simplest, economical, efficient, and eco-friendly in this context. Main body Geopolymers exhibit heterogeneous amorphous microstructure and wide surface area. The compatibility for depollution and the performance of these materials mainly depend upon their preparation methods, composition, and microstructure. Fly ash-based geopolymer may serve as a better alternate to various cost-effective adsorbents and it will be a proven environmentally viable, waste to money solution by consuming heaps of fly ash waste for the adsorbent modified by using fly ash. The possible utilization of wastes from several industries is a matter of concerned sustainability benefits. This study shows that fly ash-based geopolymers have the potential to cope up with the problems and risk factors associated with the fly ash waste management and it would be the utmost scientific panacea in the field of removing toxins from aqueous medium and maintain environmental health in the future. Short conclusions The literature available in different databases is very limited pertaining to heavy metal remediation using fly ash-based geopolymers. Keeping all the factors in mind, this article is an attempt to summarize relevant informations related to work done on fly ash-based geopolymers for treating aqueous solutions comprising heavy metals.

2019 ◽  
Vol 5 ◽  
pp. 1
Author(s):  
Manish Batham ◽  
Jot Sharma ◽  
◽  

The contamination of soil by anthropogenic activities is of great concern in recent times. There is an urgent demand of reliable and eco-friendly approaches for remediation of this concern. The current techniques for heavy metal remediation from contaminated soil are costly, time consuming, and harmful for the environment. Toxicity of heavy metals can reduce plant growth, and a high level of presence of these heavy metals is a risk factor to human and plant health. Heavy metals neither biodegradable materials nor are created. They occur naturally in the earth crust, and they reach the environment by human activities. Organic compounds can be degraded, but metals cannot degrade, and therefore effective cleanup requires its immobilization to reduce or remove toxicity. Recently, research focuses on cost-effective technologies to clean polluted areas. Vermiremediation and phytoremediation are two such useful techniques. In these eco-friendly techniques of remediation, the target plants accumulate, volatilize the contaminants, or convert them into some nontoxic forms, thus remediating the soil.


2014 ◽  
Vol 4 (1) ◽  
pp. 193 ◽  
Author(s):  
Gideon Ramtahal ◽  
Ivan Chang Yen ◽  
Isaac Bekele ◽  
Frances Bekele ◽  
Lawrence Wilson ◽  
...  

<p>The determination of heavy metals in cocoa beans and chocolates is of great importance, due to increasingly stringent regulations being implemented by international legislative bodies and chocolate manufacturers, to protect the health of their consumers. While various techniques exist for heavy metal analyses in cocoa, this study developed a cost-effective, accurate and precise method capable of processing up to 120 samples per batch for the determination of cadmium, copper, nickel and zinc. For sample extractions, a normal laboratory hot plate and locally fabricated high-capacity digestion blocks were used, instead of dedicated block digestion or microwave digestion systems. In addition, only concentrated nitric acid was used, instead of mixed reagents used in standardized methods, for metal extractions from samples, with a sample: extractant ratio of 0.5 g : 10 mL, digestion at 130 ºC, followed by filtration and analysis by flame atomic absorption spectrophotometry. The method was validated with Certified Reference Materials, with heavy metal recoveries generally &gt;95%. Additionally, an in-house quality control sample of ground cocoa nib analyzed together with the Certified Reference Materials was used to monitor the consistency of analyses of heavy metals in cocoa bean samples.</p>


2019 ◽  
Vol 16 (1) ◽  
pp. 01-13 ◽  
Author(s):  
Pragya Goyal ◽  
Pranoti Belapurkar ◽  
Anand Kar

Microbial assisted remediation is the ray of hope in the current scenario of tremendous heavy metal pollution. The indiscriminate release of heavy metal laden industrial effluents in the water bodies and soil is now manifesting itself in the form of life threatening health hazards to humans. The conventional heavy metal remediation strategies are not only expensive but are ineffective in low metal concentrations. Microbial assisted remediation of heavy metals has come forward as the cheap and easy alternative. Amongst the various bacterial genera actively involved in bioremediation of cadmium and nickel in the environment, genus Bacillus has shown remarkable ability in this respect owing to its various biochemical and genetic pathways. It can perform bioremediation using multiple mechanisms including biosorption and bioaccumulation. This genus has also been able to reduce toxicity caused by cadmium and nickel in eukaryotic cell lines and in mice, a property also found in probiotic genera like Lactobacillus and Bifidobacterium. This paper reviews the role of environmentally present and known probiotic species of genus Bacillus along with different probiotic genera for their various mechanisms involved for remediation of cadmium and nickel.


2020 ◽  
Vol 10 (27) ◽  
pp. 200911
Author(s):  
Aung Zaw Tun ◽  
Pokkate Wongsasuluk ◽  
Wattasit Siriwong

Background. Artisanal and small-scale mining activities are widely practiced globally. Concentrations of heavy metals associated with gold, such as copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb) can increase in the environment as a result of mining activities, leading to environmental pollution and pose toxicity risks to humans and animals. Objectives. The aim of the present study was to investigate soil concentrations of toxic heavy metals in placer small-scale gold mining operations in Myanmar. Methods. Soil samples were collected from three placer small-scale gold mining sites: Site A located in the Hmawbon public protected forest, Site B and Site C, situated in the Nant-Kyin reserved forest around Nar Nant Htun village. At each site, soil samples were collected from four gold mining stages (ore processing, sluicing, panning, and amalgamation). Atomic absorption spectroscopy was utilized to examine the concentrations of As, Cd, Pb, and Hg. Results. The highest heavy metal concentrations were generally found in the amalgamation stages across all the gold mining sites. Across the three mining sites, the maximum heavy metal concentrations in the amalgamation stage were 22.170 mg.kg−1 for As, 3.070 mg.kg−1 for Cd, 77.440 mg.kg−1 for Hg, and 210.000 mg.kg−1 for Pb. Conclusions. The present study examined the concentrations of As, Cd, Hg and Pb in the soil of several small-scale gold mining sites in Banmauk Township, Myanmar. The results demonstrated the presence of high concentrations of heavy metals in the soil of the gold mining sites. Miners in this area work without proper personal protective equipment, and frequent exposure to heavy metals in the soil may cause adverse health effects. The present study provides baseline data for future risk assessment studies of heavy metal contamination in gold mines. Competing Interests. The authors declare no competing financial interests


Author(s):  
Jianghong Liu ◽  
Jian Xue ◽  
Dandan Yuan ◽  
Xiaohang Wei ◽  
Huimin Su

Heavy metal pollution has pervaded many parts of the world, especially developing countries such as China. The discharge of wastewater containing heavy metals will cause soil pollution for a long time and harm to human health. Soil washing is an environmentally feasible and cost-effective approach for the clean-up of sites contaminated with heavy metals. As a relatively environmental protection agent, surfactants are widely used in soil washing. This paper generalized the methods of remediation of soil from heavy metals, expounded the mechanisms of soil washing by surfactant and the types of surfactants and summarized the application of different surfactants in washing heavy metals from soil. Finally, the application prospects and development trends of surfactant washing heavy metals from soil have been prospected.


2013 ◽  
Vol 389 ◽  
pp. 29-35 ◽  
Author(s):  
Norzila Othman ◽  
S. Mohd-Asharuddin ◽  
M.F.H. Azizul-Rahman

Biosorption is an environmental friendly method for metal removal as it can be used as a cost effective and efficient technique for heavy metal removal. A lot of biomass can be choosed as biosorbent such as waste material from food processing and agriculture.ent. This paper will review the potential used of local fruit rind as biosorbent for heavy metal removal in wastewater. Heavy metals have been in various industries and resulted to a toxic condition in aquatic ecosystem. Therefore, various techniques have been employed for the treatment of metal-bearing industrial wastewaters including biological treatment through biosorption. Biosorption offers the advantages of low cost, good efficiency and production of sludge with high metal content is possible to avoid by the existence of metal recovery method from metal loaded biosorbent. The successful application of local fruit waste in treating wastewater containing heavy metals requires a deeper understanding of how biosorbent material proceeds.


2017 ◽  
Vol 75 (10) ◽  
pp. 2443-2453 ◽  
Author(s):  
Henry H. Mungondori ◽  
Sandile Mtetwa ◽  
Lilian Tichagwa ◽  
David M. Katwire ◽  
Pardon Nyamukamba

The adsorption of a multi-component system of ferrous, chromium, copper, nickel and lead on single, binary and ternary composites was studied. The aim of the study was to investigate whether a ternary composite of clay, peanut husks (PH) and saw-dust (SD) exhibited a higher adsorption capacity than that of a binary system of clay and SD as well as a single component adsorbent of PH alone. The materials were used in their raw state without any chemical modifications. This was done to retain the cost effective aspect of the naturally occurring adsorbents. The adsorption capacities of the ternary composite for the heavy metals Fe2+, Cr3+, Cu2+, Ni2+ and Pb2+ were 41.7 mg/g, 40.0 mg/g, 25.5 mg/g, 41.5 mg/g and 39.0 mg/g, respectively. It was found that the ternary composite exhibited excellent and enhanced adsorption capacity compared with both a binary and single adsorbent for the heavy metals Fe2+, Ni2+ and Cr3+. Characterization of the ternary composites was done using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Kinetic models and adsorption isotherms were also studied. The pseudo second order kinetic model and the Langmuir adsorption isotherm best described the adsorption mechanisms for the ternary composite towards each of the heavy metal ions.


2021 ◽  
Vol 12 (4) ◽  
pp. 5486-5509

Quick industrial development, current farming practices, and other anthropogenic events enhance an important number of poisonous heavy metals in the atmosphere, which persuades severe poisonous effect on all the forms of living beings, which change the properties. This type of heavy metal pollution has ecological dangers as well as affects human health. Heavy metal contamination is mutagenic, endocrine, carcinogenic, and teratogenic, which causes nervous health problems mostly in kids. Further, an appropriate method for the remediation of adulteration of water along with soil is phytoremediation. In addition, it has been progressively utilized. Phytoremediation helps to improve the contaminated soil and water by the extraction of contaminating heavy metals, which is called phytoextraction and their phytostabilisation. Phytoremediation is based on many processes, and it is very eco-friendly, cost-effective, and economical. In this review, we aim to explain the detailed study of phytoremediation and current approaches.


2003 ◽  
Vol 47 (7-8) ◽  
pp. 251-257 ◽  
Author(s):  
U. Scherer ◽  
S. Fuchs ◽  
H. Behrendt ◽  
T. Hillenbrand

The input of seven heavy metals (Cd, Cr, Cu, Hg, Ni, Pb and Zn) into the large river basins of Germany via various point and diffuse pathways were estimated for the period of 1985 through 2000. To quantify the emissions via point sources a nationwide survey on heavy metal data of municipal wastewater treatment plants and industrial direct discharges was carried out. The input via diffuse pathways was calculated using an adapted version of the model MONERIS. This model accounts for the significant transport processes, and it includes a Geographical Information System (GIS) that provides digital maps as well as extensive statistical information. For a comparison of the calculated heavy metal emission with the measured heavy metal load at monitoring stations the losses of heavy metals due to retention processes within the river systems have to be considered. Therefore heavy metal retention was calculated according to the retention functions given by Vink and Behrendt. For the large river basins a good correspondence could be found between estimated and measured heavy metal loads in rivers. The total emission into the North Sea decreased for each metal during the period of 1985 to 2000. The reduction varies between 87% for Hg and 41% for Ni mainly caused by the decline via point sources. Today's emissions of heavy metals into river basins of Germany are dominated by the input via diffuse pathways. The most important diffuse emission pathways are “paved urban areas” and “erosion”.


2019 ◽  
Vol 24 (3) ◽  
pp. 497-521 ◽  
Author(s):  
David Romero-Estévez ◽  
Gabriela S Yánez-Jácome ◽  
Karina Simbaña-Farinango ◽  
Pamela Y Vélez-Terreros ◽  
Hugo Navarrete

Environmental pollution allows heavy metals to interact with ecosystems, bioaccumulating and passing through the food chain. Animals and human scan consume contaminated species and reach toxic and harmful concentrations in their organisms. While there are international regulatory frameworks for heavy metal contents, these are not always known or suitable for local conditions. This situation calls for the development of locally-applicable analytical methods for the determination of heavy metal concentrations in common vegetal and animal food products. Two established methods (AOAC999.11, based on sample drying and calcination, and IPNAC-06-00, based on microwave-assisted acid digestion) were comparatively tested at the CESAQ-PUCE laboratory in Quito, Ecuador, to determine their suitability. Sample matrices used were non industrial, non-organic tomato, lettuce, and beef commonly found in local markets. Heavy metals tested were cadmium, nickel, and lead. Test guidelines and comparative parameters were based on AOAC(2002) and included quantification limits, repeatability variation coefficients, intermediate precision percentages, accuracy and calculated expanded uncertainties. Unlike method AOAC999.11, method IPNAC 06-00 performance for all parameters was with in the range of recommended expected values as per AOAC, and was therefore deemed more suitable to be applied under the local CESAQ-PUCE laboratory conditions. The validation of method IPNAC-06-00 demonstrated its local applicability. In addition, IPNAC 06-00 can beused by similar laboratories to assess contaminants concentrations and improve the base line information concerning human exposure to toxic metals.


Sign in / Sign up

Export Citation Format

Share Document