Estimating permeability of shale-gas reservoirs from porosity and rock compositions

Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. MR283-MR294 ◽  
Author(s):  
Peiqiang Zhao ◽  
Jianchao Cai ◽  
Zhenhua Huang ◽  
Mehdi Ostadhassan ◽  
Fuqiang Ran

Effectively estimating the permeability of shale-gas reservoirs by traditional models is challenging; however, study in this area is lacking and deficient. We have developed a method for predicting the permeability of shale-gas reservoirs from porosity and rock compositions including mineralogy and organic matter content, which is applicable to laboratory data and downhole measurements. First, two sets including 38 samples from the Longmaxi Formations were tested for porosity, permeability, grain density, total-organic-carbon (TOC) content, mineralogical composition, and low-temperature nitrogen adsorption (LTNA). We used Kozeny’s equation to calculate the specific surface area, which was viewed as the effective specific surface in shale formations through comparing with the specific surface from LTNA. Furthermore, the effective specific surface was found to be positively correlated with clays, pyrite, and TOC contents, whereas it was negatively correlated with quartz, feldspar, and carbonates. Then, an empirical equation between the effective specific surface area and rock compositions was established via a partial least-squares method, which can process the serious multicollinearity of various mineral contents. Combined with Kozeny’s equation, this equation enabled a prediction of permeability from porosity and rock composition. The results indicated that the predicted and measured permeability have a reasonable match. Compared with other models, this method avoids the correlations between porosity and minerals, providing better insight to the influence of minerals and organic matter on permeability. The influences of rock composition on permeability are different, and are caused by the different types and sizes of pores developed within the minerals and organic matter. In addition, the new method was successfully applied to the well-log data from a shale-gas well for permeability predictions.

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


2018 ◽  
Vol 37 (6) ◽  
pp. 791-804 ◽  
Author(s):  
Yuantao Gu ◽  
Quan Wan ◽  
Wenbin Yu ◽  
Xiaoxia Li ◽  
Zhongbin Yu

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Weiwei Liu ◽  
Kun Zhang ◽  
Qianwen Li ◽  
Zhanhai Yu ◽  
Sihong Cheng ◽  
...  

Due to the specificity of the geological background, terrestrial strata are widely distributed in the major hydrocarbon-bearing basins in China. In addition, terrestrial shales are generally featured with high thickness, multiple layers, high TOC content, ideal organic matter types, and moderate thermal evolution, laying a solid material foundation for hydrocarbon generation. However, the quantitative characterization study on their pore structure remains inadequate. In this study, core samples were selected from the Middle Jurassic Lianggaoshan Formation in the southeastern Sichuan Basin of the Upper Yangtze Region for analyses on its TOC content and mineral composition. Besides, experiments including oil washing, the adsorption/desorption of CO2 and nitrogen, and high-pressure mercury pressure experiments were carried out. The pore structure of different petrographic types of terrestrial shales can be accurately and quantitatively characterized with these works. The following conclusions were drawn: for organic-rich mixed shales and organic-rich clay shales, the TOC content is the highest; the pore volume, which is primarily provided by macropores and specific surface area, which is provided by mesopores, was the largest, thus providing more space for shale oil and gas reservation. The pores take on a shape either close to a parallel plate slit or close to or of an ink bottle. For organic-matter-bearing shales, both the pore volume and specific surface area are the second-largest and are provided by the same sized pores with organic-rich mixed shales. Its pores take on a shape approximating either a parallel plate slit or an ink bottle. Organic-matter-bearing mixed shales have the lowest pore volume and specific surface area; its pore volume is primarily provided by macropores, and the specific surface area by mesopores and the shape of the pores are close to an ink bottle.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6716
Author(s):  
Shengxiu Wang ◽  
Jia Wang ◽  
Yuelei Zhang ◽  
Dahua Li ◽  
Weiwei Jiao ◽  
...  

Shale gas accumulates in reservoirs that have favorable characteristics and associated organic geochemistry. The Wufeng-Longmaxi formation of Well Yucan-6 in Southeast Chongqing, SW China was used as a representative example to analyze the organic geochemical and reservoir characteristics of various shale intervals. Total organic carbon (TOC), vitrinite reflectance (Ro), rock pyrolysis, scanning electron microscopy (SEM), and nitrogen adsorption analyses were conducted, and a vertical coupling variation law was established. Results showed the following: the Wufeng-Longmaxi formation shale contains kerogen types I and II2; the average TOC value at the bottom of the formation is 3.04% (and the average value overall is 0.78%); the average Ro value is 1.94%; the organic matter is in a post mature thermal evolutionary stage; the shale minerals are mainly quartz and clay; and the pores are mainly intergranular, intragranular dissolved pores, organic matter pores and micro fractures. In addition, the average specific surface area (BET) of the shale is 5.171 m2/g; micropores account for 4.46% of the total volume; the specific surface area reaches 14.6%; and mesopores and macropores are the main pore spaces. There is a positive correlation between TOC and the quartz content of Wufeng-Longmaxi shale, and porosity is positively correlated with the clay mineral content. It is known that organic pores and the specific area develop more favorably when the clay mineral content is higher because the adsorption capacity is enhanced. In addition, as shale with a high clay mineral content and high TOC content promotes the formation of a large number of nanopores, it has a strong adsorption capacity. Therefore, the most favorable interval for shale gas exploration and development in this well is the shale that has a high TOC content, high clay mineral content, and a suitable quartz content. The findings of this study can help to better identify shale reservoirs and predict the sweet point in shale gas exploration and development.


1999 ◽  
Vol 40 (3) ◽  
pp. 83-89 ◽  
Author(s):  
N. R. Khatiwada ◽  
C. Polprasert

Biofilm bacteria attached to submerged surfaces play a major role in organic matter degradation in free-water-surface(FWS) constructed wetlands used for wastewater treatment. Effective specific surface area (as) available for the biofilm bacteria is an important parameter in organic matter degradation and in describing the biofilm kinetic models used in the design and operation of constructed wetlands. In this study, kinetic models based on two possible biofilm geometries were developed for the determination of as and its non-dimensionalised value or area factor (δ). The as and δ values were estimated for a laboratory FWS constructed wetland treating domestic wastewater based on the chemical oxygen demand (COD) removal performance and other kinetic parameters. With the assumption of slab geometry for the biofilm, the values of as and δ were found as 3.15 m2/m3 and 2.2 for the lab unit having 80% mass COD removal, whereas by considering the cylindrical geometry for the biofilm attached on the lateral roots higher values of as and δ were obtained.


Sign in / Sign up

Export Citation Format

Share Document