scholarly journals Relationship between Organic Geochemistry and Reservoir Characteristics of the Wufeng-Longmaxi Formation Shale in Southeastern Chongqing, SW China

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6716
Author(s):  
Shengxiu Wang ◽  
Jia Wang ◽  
Yuelei Zhang ◽  
Dahua Li ◽  
Weiwei Jiao ◽  
...  

Shale gas accumulates in reservoirs that have favorable characteristics and associated organic geochemistry. The Wufeng-Longmaxi formation of Well Yucan-6 in Southeast Chongqing, SW China was used as a representative example to analyze the organic geochemical and reservoir characteristics of various shale intervals. Total organic carbon (TOC), vitrinite reflectance (Ro), rock pyrolysis, scanning electron microscopy (SEM), and nitrogen adsorption analyses were conducted, and a vertical coupling variation law was established. Results showed the following: the Wufeng-Longmaxi formation shale contains kerogen types I and II2; the average TOC value at the bottom of the formation is 3.04% (and the average value overall is 0.78%); the average Ro value is 1.94%; the organic matter is in a post mature thermal evolutionary stage; the shale minerals are mainly quartz and clay; and the pores are mainly intergranular, intragranular dissolved pores, organic matter pores and micro fractures. In addition, the average specific surface area (BET) of the shale is 5.171 m2/g; micropores account for 4.46% of the total volume; the specific surface area reaches 14.6%; and mesopores and macropores are the main pore spaces. There is a positive correlation between TOC and the quartz content of Wufeng-Longmaxi shale, and porosity is positively correlated with the clay mineral content. It is known that organic pores and the specific area develop more favorably when the clay mineral content is higher because the adsorption capacity is enhanced. In addition, as shale with a high clay mineral content and high TOC content promotes the formation of a large number of nanopores, it has a strong adsorption capacity. Therefore, the most favorable interval for shale gas exploration and development in this well is the shale that has a high TOC content, high clay mineral content, and a suitable quartz content. The findings of this study can help to better identify shale reservoirs and predict the sweet point in shale gas exploration and development.

Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Weidong Xie ◽  
Meng Wang ◽  
Hongyue Duan

Adsorbed gas is one of the crucial occurrences in shale gas reservoirs; thus, it is of great significance to ascertain the adsorption capacity of shale and the adsorption characteristics of CH4. In this investigation, the Taiyuan–Shanxi Formations’ coal-measure shale gas reservoir of the Carboniferous–Permian era in the Hedong Coalfield was treated as the research target. Our results exhibit that the shale samples were characterized by a high total organic carbon (TOC) and over to high-over maturity, with an average TOC of 2.45% and average Ro of 2.59%. The mineral composition was dominated by clay (62% on average) and quartz (22.45% on average), and clay was mainly composed of kaolinite and illite. The Langmuir model showed a perfect fitting degree to the experimental data: VL was in the range of 0.01 cm3/g to 0.77 cm3/g and PL was in the range of 0.23–8.58 MPa. In addition, the fitting degree depicted a linear negative correlation versus TOC, while mineral composition did not exhibit a significant effect on the fitting degree, which was caused by the complex pore structure of organic matter, and the applicability of the monolayer adsorption theory was lower than that of CH4 adsorption on the mineral’s pore surface. An apparent linear positive correlation of VL versus the TOC value was recorded; furthermore, the normalized VL increased with the growth of the total content of clay mineral (TCCM), decreased with the growth of the total content of brittle mineral (TCBM), while there was no obvious correlation of normalized VL versus kaolinite, illite and quartz content. The huge amount of micropores and complex internal structure led to organic matter possessing a strong adsorption capacity for CH4, and clay minerals also promoted adsorption due to the development of interlayer pores and intergranular pores.


2020 ◽  
Vol 17 (6) ◽  
pp. 1512-1526
Author(s):  
Xiao-Guang Yang ◽  
Shao-Bin Guo

AbstractThe evolution of shale reservoirs is mainly related to two functions: mechanical compaction controlled by ground stress and chemical compaction controlled by thermal effect. Thermal simulation experiments were conducted to simulate the chemical compaction of marine-continental transitional shale, and X-ray diffraction (XRD), CO2 adsorption, N2 adsorption and high-pressure mercury injection (MIP) were then used to characterize shale diagenesis and porosity. Moreover, simulations of mechanical compaction adhering to mathematical models were performed, and a shale compaction model was proposed considering clay content and kaolinite proportions. The advantage of this model is that the change in shale compressibility, which is caused by the transformation of clay minerals during thermal evolution, may be considered. The combination of the thermal simulation and compaction model may depict the interactions between chemical and mechanical compaction. Such interactions may then express the pore evolution of shale in actual conditions of formation. Accordingly, the obtained results demonstrated that shales having low kaolinite possess higher porosity at the same burial depth and clay mineral content, proving that other clay minerals such as illite–smectite mixed layers (I/S) and illite are conducive to the development of pores. Shales possessing a high clay mineral content have a higher porosity in shallow layers (< 3500 m) and a lower porosity in deep layers (> 3500 m). Both the amount and location of the increase in porosity differ at different geothermal gradients. High geothermal gradients favor the preservation of high porosity in shale at an appropriate Ro. The pore evolution of the marine-continental transitional shale is divided into five stages. Stage 2 possesses an Ro of 1.0%–1.6% and has high porosity along with a high specific surface area. Stage 3 has an Ro of 1.6%–2.0% and contains a higher porosity with a low specific surface area. Finally, Stage 4 has an Ro of 2.0%–2.9% with a low porosity and high specific surface area.


Clay Minerals ◽  
2017 ◽  
Vol 52 (2) ◽  
pp. 217-233
Author(s):  
Geng Yi-Kai ◽  
Jin Zhen-Kui ◽  
Zhao Jian-Hua ◽  
Wen Xin ◽  
Zhang Zhen-Peng ◽  
...  

AbstractThe present study examines the characteristics of clay minerals in shale gas reservoirs and their influence on reservoir properties based on X-ray diffraction and scanning electron microscopy. These analyses were combined with optical microscopy observations and core and well-log data to investigate the genesis, distribution characteristics, main controlling factors and pore features of clay minerals of the Lower Silurian Longmaxi Formation in the East Sichuan area, China. The clay mineral assemblage consists of illite + mixed-layer illite-smectite (I-S) + chlorite. This assemblage includes three sources of clay minerals: detrital, authigenic and diagenetic minerals. The lower section of the Longmaxi Formation in the Jiaoshiba area has sealing ability which resulted in abnormal high pressures during hydrocarbon generation which inhibited illitization. Therefore, an anomalous transformation sequence is present in which the mixed-layer I-S content increases with depth. This anomalous transformation sequence can be used to infer the existence of abnormal high pressures. The detrital components of the formation also affect the clay-minerals content indirectly, especially the abundance of K-feldspar. The transformation of mixed-layer I-S to illite is limited due to the limited availability of K+, which determines the extent of transformation. Three types of pores were observed in the shale reservoir rocks of the Longmaxi Formation: interparticle (interP) pores, intraparticle (intraP) pores and organic-matter pores. The clay-mineral content controls the development of intraP pores, which are dominated by pores within clay particles. For a given clay mineral content, smectite and mixed-layer I-S were more conducive to the development of shale-gas reservoirs than other clay minerals.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. MR283-MR294 ◽  
Author(s):  
Peiqiang Zhao ◽  
Jianchao Cai ◽  
Zhenhua Huang ◽  
Mehdi Ostadhassan ◽  
Fuqiang Ran

Effectively estimating the permeability of shale-gas reservoirs by traditional models is challenging; however, study in this area is lacking and deficient. We have developed a method for predicting the permeability of shale-gas reservoirs from porosity and rock compositions including mineralogy and organic matter content, which is applicable to laboratory data and downhole measurements. First, two sets including 38 samples from the Longmaxi Formations were tested for porosity, permeability, grain density, total-organic-carbon (TOC) content, mineralogical composition, and low-temperature nitrogen adsorption (LTNA). We used Kozeny’s equation to calculate the specific surface area, which was viewed as the effective specific surface in shale formations through comparing with the specific surface from LTNA. Furthermore, the effective specific surface was found to be positively correlated with clays, pyrite, and TOC contents, whereas it was negatively correlated with quartz, feldspar, and carbonates. Then, an empirical equation between the effective specific surface area and rock compositions was established via a partial least-squares method, which can process the serious multicollinearity of various mineral contents. Combined with Kozeny’s equation, this equation enabled a prediction of permeability from porosity and rock composition. The results indicated that the predicted and measured permeability have a reasonable match. Compared with other models, this method avoids the correlations between porosity and minerals, providing better insight to the influence of minerals and organic matter on permeability. The influences of rock composition on permeability are different, and are caused by the different types and sizes of pores developed within the minerals and organic matter. In addition, the new method was successfully applied to the well-log data from a shale-gas well for permeability predictions.


2017 ◽  
Vol 5 (2) ◽  
pp. SF31-SF39 ◽  
Author(s):  
Xiangzeng Wang

The Yanchang Formation in the Ordos Basin in North Central China represents a large, long-lived lacustrine system of the late Triassic Period. The extensive shales within this system provide hydrocarbons (HCs) for conventional and unconventional oil and gas reservoirs. In the formation, the Chang 7 shale is the thickest shale with the best geochemical parameters, and it is the main source rock in this area. In recent years, the discovery of shale gas in the Chang 7 shale has promoted the exploration and development of lacustrine shale gas in China. We have estimated the shale gas resource potential based on the analysis of the geologic conditions of the Chang 7 shale. The average thickness of the Chang 7 shale reaches 42.6 m, and the main organic matter types are types [Formula: see text] and [Formula: see text]. The average content of organic carbon is more than 3%, and the average HC potential is [Formula: see text]. However, the thermal maturity of the Chang 7 shale is low with a vitrinite reflectance [Formula: see text] ranging from 0.83% to 1.10%. The Chang 7 shale lithology consists of shale and sandy laminations or thin sandstones. The shale is characterized by high clay mineral content and poor porosity and permeability, with an average porosity of 1.8% and an average permeability of [Formula: see text]. The sandy laminations or thin sandstones are characterized by relatively higher brittle mineral content, relatively lower clay mineral content, and higher porosity and permeability. The pores of the Chang 7 shale include primary intergranular and intragranular pores, secondary intragranular and intragranular dissolved pores, fracture pores, and organic-matter-hosted pores. The proportion of adsorbed gas, free gas, and dissolved gas is approximately 52%, 37%, and 11%, respectively, and the shale gas resources of the Chang 7 shale are [Formula: see text].


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


2021 ◽  
Vol 15 (2) ◽  
pp. 131-144
Author(s):  
Chunjiang Jin ◽  
Huimin Chen ◽  
Luyuan Wang ◽  
Xingxing Cheng ◽  
Donghai An ◽  
...  

In this study, aspen wood sawdust was used as the raw material, and Fe(NO3)3 and CO2 were used as activators. Activated carbon powder (ACP) was produced by the one-step physicochemical activation method in an open vacuum tube furnace. The effects of different mass ratios of Fe(NO3)3 and aspen wood sawdust on the pore structure of ACP were examined under single-variable experimental conditions. The mass ratio was 0–0.4. The detailed characteristics of ACP were examined by nitrogen adsorption, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption capacity of ACP was established by simulating volatile organic compounds (VOCs) using ethyl acetate. The results showed that ACP has a good nanostructure with a large pore volume, specific surface area, and surface functional groups. The pore volume and specific surface area of Fe-AC-0.3 were 0.26 cm3/g and 455.36 m2/g, respectively. The activator played an important role in the formation of the pore structure and morphology of ACP. When the mass ratio was 0–0.3, the porosity increased linearly, but when it was higher than 0.3, the porosity decreased. For example, the pore volume and specific surface area of Fe-AC-0.4 reached 0.24 cm3/g and 430.87 m2/g, respectively. ACP presented good VOC adsorption performance. The Fe-AC-0.3 sample, which contained the most micropore structures, presented the best adsorption capacity for ethyl acetate at 712.58 mg/g. Under the action of the specific reaction products nitrogen dioxide (NO2) and oxygen, the surface of modified ACP samples showed different rich C/O/N surface functional groups, including C-H, C=C, C=O, C-O-C, and C-N.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1064
Author(s):  
Masanori Kohno

Considering the relevance of clay mineral-bearing geomaterials in landslide/mass movement hazard assessment, various engineering projects for resource development, and stability evaluation of underground space utilization, it is important to understand the permeability of these clay mineral-based geomaterials. However, only a few quantitative data have been reported to date regarding the effects of the clay mineral type and hydraulic gradient on the permeability of clay mineral materials. This study was conducted to investigate the permeability of clay mineral materials based on the clay mineral type, under different hydraulic gradient conditions, through a constant-pressure permeability test. Comparative tests have revealed that the difference in the types of clay mineral influences the swelling pressure and hydraulic conductivity. In addition, it has been found that the difference in water pressure (hydraulic gradient) affects the hydraulic conductivity of clay mineral materials. The hydraulic conductivity has been found to be closely associated with the specific surface area of the clay mineral material. Furthermore, the hydraulic conductivity value measured is almost consistent with the value calculated theoretically using the Kozeny–Carman equation. Moreover, the hydraulic conductivity is also found to be closely associated with the hydrogen energy, calculated from the consistency index of clay. This result suggests that the hydraulic conductivity of clay mineral materials can be estimated based on the specific surface area and void ratio, or consistency index of clay.


2018 ◽  
Vol 6 (4) ◽  
pp. T819-T833 ◽  
Author(s):  
Yang Gu ◽  
Wenlong Ding ◽  
Min Yin ◽  
Ruyue Wang ◽  
Baocheng Jiao ◽  
...  

The marine shale in South China has great gas exploration potential, and exploration in the Sichuan Basin has been successful, but the degree of exploration remains low in the Guizhou Province. We used organic geochemical analyses (total organic carbon content and kerogen type), scanning electron microscopy (SEM), field emission SEM, nuclear magnetic resonance (NMR), X-ray diffraction analysis, and low-temperature [Formula: see text] and [Formula: see text] adsorption experimental methods to study the micropore types and pore structures and their effects on the methane adsorption capacity of organic-rich shales found in the Fenggang block in northern Guizhou Province. The results indicate that the microscopic surface porosity of the lower Cambrian Niutitang Formation ranges from 2.88% to 5.34%, with an average value of 3.86%. Based on nitrogen adsorption methods, the range of the average pore size distribution is 4.6–9.491 nm, with an average value of 6.68 nm. All of the samples exhibit significant unimodal distributions. The main pore size is less than 10 nm, and these pores account for most of the mesopore volume, which is generally consistent with the NMR results. The methane adsorption capacity of the shale samples gradually increases in the range of 0–8 MPa at 30°C and reaches a maximum at approximately 10 MPa. Positive correlations were found between the gas content and specific surface area, total pore volume, and micropore volume. These strong correlations indicate that the Niutitang Shale has a high specific surface area, a high pore volume, and narrow-diameter pores, demonstrating that it has a high gas adsorption capacity. The results of this study provide valuable information regarding the adsorption characteristics of marine shales and the factors that affect those characteristics.


Sign in / Sign up

Export Citation Format

Share Document