The relationship between organic matter and specific surface area in <2 μm clay size fraction of muddy source rock

2013 ◽  
Vol 56 (8) ◽  
pp. 1343-1349 ◽  
Author(s):  
Fei Ding ◽  
JinGong Cai ◽  
MingShui Song ◽  
Peng Yuan
2012 ◽  
Vol 209-211 ◽  
pp. 1990-1994 ◽  
Author(s):  
Qin Zhang ◽  
Zhao Hui Zhang ◽  
Liang Wang ◽  
Zi Long Zhang ◽  
Xing Fei Guo

The properties of four different activated carbon fiber cloth (ACF), such as specific surface area, pore volumes and pore size distribution, were evaluated. The relationship between ACF properties and its electrosorption performance was analyzed. The experimental results show that pore structure has more influence on the performance of ACF electrode than that of specific surface area for ACF material. More abundant mesopores and shallower pore channels for ACF is favorable to improve the specific capacitance and electrosorption capacity of ions.


2010 ◽  
Vol 636-637 ◽  
pp. 124-129 ◽  
Author(s):  
D.G. Pinto ◽  
Abílio P. Silva ◽  
A.M. Segadaes ◽  
T.C. Devezas

Alumina, with high melting point (2050°C), high hardness and mechanical strength, and excellent abrasion resistance, is one of the most common raw materials used in self-flow refractory castables (SFRC) for monolithic linings and is commercially available in various fine to coarse size classes. However, the performance of the refractory lining depends not only on the properties of its ingredients but also on its easy installation (good flowability). The aim of this work was to evaluate the relationship between the flowability index (FI) of fresh castable and the specific surface area (SSA) of its particles, which is mostly determined by the finer particles content. The results obtained showed that, by controlling the proportion between matrix and aggregate, it is possible to control the SSA of the refractory castable and find a mathematical relationship between the specific surface area and the minimum flowability index required to obtain a self-flow refractory castable. It is, thus, possible to optimize the refractory castable size composition and obtain an estimate for FI as a function of SSA. Using a minimum 45 wt.% matrix content in the castable mixture, a SSA value above 2.215 m2/g is obtained, which leads to FI ≥ 80%, the recommended value for self-flow.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Weiwei Liu ◽  
Kun Zhang ◽  
Qianwen Li ◽  
Zhanhai Yu ◽  
Sihong Cheng ◽  
...  

Due to the specificity of the geological background, terrestrial strata are widely distributed in the major hydrocarbon-bearing basins in China. In addition, terrestrial shales are generally featured with high thickness, multiple layers, high TOC content, ideal organic matter types, and moderate thermal evolution, laying a solid material foundation for hydrocarbon generation. However, the quantitative characterization study on their pore structure remains inadequate. In this study, core samples were selected from the Middle Jurassic Lianggaoshan Formation in the southeastern Sichuan Basin of the Upper Yangtze Region for analyses on its TOC content and mineral composition. Besides, experiments including oil washing, the adsorption/desorption of CO2 and nitrogen, and high-pressure mercury pressure experiments were carried out. The pore structure of different petrographic types of terrestrial shales can be accurately and quantitatively characterized with these works. The following conclusions were drawn: for organic-rich mixed shales and organic-rich clay shales, the TOC content is the highest; the pore volume, which is primarily provided by macropores and specific surface area, which is provided by mesopores, was the largest, thus providing more space for shale oil and gas reservation. The pores take on a shape either close to a parallel plate slit or close to or of an ink bottle. For organic-matter-bearing shales, both the pore volume and specific surface area are the second-largest and are provided by the same sized pores with organic-rich mixed shales. Its pores take on a shape approximating either a parallel plate slit or an ink bottle. Organic-matter-bearing mixed shales have the lowest pore volume and specific surface area; its pore volume is primarily provided by macropores, and the specific surface area by mesopores and the shape of the pores are close to an ink bottle.


2016 ◽  
Vol 6 (3) ◽  
pp. 54-59
Author(s):  
Trong Hung Nguyen ◽  
Ba Thuan Le

The report “Brandon mathematical model describing the effect of calcination and reduction parameters on specific surface area of UO2 powders” [14] has built up a mathematical model describing the effect of the fabrication parameters on SSA (Specific Surface Area) of ex-AUC (Ammonium Uranyl Carbonate) UO2 powders. In the paper, the Brandon mathematical model that describe the relationship between the essential fabrication parameters [reduction temperature (TR), calcination temperature (TC), calcination time (tC) and reduction time (tR)] and SSA of the obtained ex-ADU (Ammonium Di-Uranate) UO2 powder product has established. The proposed model was tested with Wilcoxon’s rank sum test, showing a good agreement with the experimental parameters. The proposed model can be used to predict and control the SSA of ex-ADU UO2 powders


1999 ◽  
Vol 40 (3) ◽  
pp. 83-89 ◽  
Author(s):  
N. R. Khatiwada ◽  
C. Polprasert

Biofilm bacteria attached to submerged surfaces play a major role in organic matter degradation in free-water-surface(FWS) constructed wetlands used for wastewater treatment. Effective specific surface area (as) available for the biofilm bacteria is an important parameter in organic matter degradation and in describing the biofilm kinetic models used in the design and operation of constructed wetlands. In this study, kinetic models based on two possible biofilm geometries were developed for the determination of as and its non-dimensionalised value or area factor (δ). The as and δ values were estimated for a laboratory FWS constructed wetland treating domestic wastewater based on the chemical oxygen demand (COD) removal performance and other kinetic parameters. With the assumption of slab geometry for the biofilm, the values of as and δ were found as 3.15 m2/m3 and 2.2 for the lab unit having 80% mass COD removal, whereas by considering the cylindrical geometry for the biofilm attached on the lateral roots higher values of as and δ were obtained.


2011 ◽  
Vol 284-286 ◽  
pp. 1381-1384 ◽  
Author(s):  
Guang Hui Li ◽  
Wei Cheng ◽  
Tao Jiang ◽  
Na Sun ◽  
Ling Feng Ai

Preparation of porous silica from thermally activated kaolinite was investigated by using acid dissociation process, and the relationship between structural transformation and acid dissociation properties of aluminium were elucidated. AlVI transfers into AlV and AlIV when kaolinite changes into metakaolinite during thermal activation. AlV is dissoluble in acid, while AlVI, AlIV are difficult to be dissolved into acid, therefore, the coordinations of aluminium affect acid dissociation of alumina markedly. Mesoporous silica is made by acid dissociation alumina of metakaolinite, and the specific surface area of porous silica is determined by acid dissociation ratio of alumina. The dissociation ratio of aluminum is up to 97% when kaolinite is activated at 900°C for 15 min. Specific surface area of the porous silica material is 357 m2/g, the pore volume is 0.43 cc/g, and BJH pore diameter is 2.18 nm. The pore is found to be in the worm-like shape by high resolution TEM analysis.


Author(s):  
Huifang Wu ◽  
Yu Jiang ◽  
Xiang Li ◽  
Jun Zhou ◽  
Xinyu Xu ◽  
...  

Abstract In this study, omphacite media were modified by roasting at high temperature. The optimal preparation conditions were as follows: the pH value was 1, concentration of FeCl3 was 2 mol/L, roasting temperature was 450 °C and roasting time was 2 h. The specific surface area, scanning electron microscopy, and EDS analysis were used to compare the unmodified and modified omphacite, and a dynamic filtration experiment was performed to treat the slightly polluted water. The analysis of characterization results revealed that, the surface structure of the modified omphacite filter media has changed greatly. Its surface is rough and potholes have increased, and the specific surface area and adsorption capacity are significantly increased. Results of the dynamic filtration experiment revealed that the average removal efficiencies of organic matter, TOC, and turbidity by quartz sand were 21.17%, 2.2%, and 94.5%. The average removal efficiencies of organic matter, TOC, and turbidity by unmodified omphacite were 23.46%, 26.7%, and 95.2%. The average removal efficiencies of organic matter, TOC, and turbidity by modified omphacite were 50.35%, 45.5%, and 96.3%. On the whole, the filtration performance of the modified omphacite filter column is the best among three filter columns, and the recovery of the backwashing performance is also better. HIGHLIGHT At present, no application of omphacite in sewage has been found.The development of omphacite filtration technology can not only provide new market hot spots for minerals in the East China Sea area, but also have a very positive value for improving water treatment technology and enhancing water treatment efficiency.It is the intersection of mineral processing and environmental science.


Sign in / Sign up

Export Citation Format

Share Document