scholarly journals Transgenic conversion of omega-6 into omega-3 fatty acids in a mouse model of Parkinson's disease

2010 ◽  
Vol 52 (2) ◽  
pp. 263-271 ◽  
Author(s):  
Melanie Bousquet ◽  
Karl Gue ◽  
Vincent Emond ◽  
Pierre Julien ◽  
Jing X. Kang ◽  
...  
Author(s):  
OJS Admin

Parkinson's disease is a neurodegenerative disease and no proper treatment or cure has been developed for it till now. Worldwide the incidence of disease has been increased with age. Latest researches have focused on the dietary aspects of Parkinson's and have revealed that a ketogenic diet may be benecial in prevention and for therapy. The main aim of this review article was to explore the dietary elements present in ketogenic diet and their respective roles in the body with link to Parkinson's disease. Ketogenic diet has been used in many neurological diseases due to its neuroprotective effects. Ketogenic diet is a normal caloric diet that composed of with high fat (mostly composed with polyunsaturated fatty acids), medium protein and low in carbohydrates. The composition of this diet makes body to utilize fatand ketones for energy by altering glucose. The major constituents present in a ketogenic diet which have neuroprotective effects against Parkinson's are; B complex vitamins, Omega-3 Fatty Acids, Omega-6 Fatty acids and Vitamin D. The benecial effects have been evaluated regarding the role of constituents present in a ketogenic diet on Parkinson's disease. The need for further researches, especially clinical trials forthe different constituents of ketogenic diet and their neuroprotective properties are still required.


2010 ◽  
Vol 66 (3) ◽  
pp. 256-264 ◽  
Author(s):  
Ana Marcia Delattre ◽  
Ágata Kiss ◽  
Raphael E. Szawka ◽  
Janete A. Anselmo-Franci ◽  
Pamela Brambilla Bagatini ◽  
...  

2011 ◽  
Vol 10 (4) ◽  
pp. 453-463 ◽  
Author(s):  
Mélanie Bousquet ◽  
Frédéric Calon ◽  
Francesca Cicchetti

2007 ◽  
pp. 37-50
Author(s):  
K Mahomed ◽  
MA Williams ◽  
IB King ◽  
S Mudzamiri ◽  
GB Woelk

We sought to examine the association between maternal erythrocyte omega-3, omega-6 and trans fatty acids and risk of preeclampsia. We conducted a case-control study of 170 women with proteinuric, pregnancy-induced hypertension and 185 normotensive pregnant women who delivered at Harare Maternity Hospital, Harare, Zimbabwe. We measured erythrocyte omega-3, omega-6 and trans fatty acid as the percentage of total fatty acids using gas chromatography. After multivariate adjustment for confounding factors, women in the highest quartile group for total omega-3 fatty acids compared with women in the lowest quartile experienced a 14% reduction in risk of preeclampsia (odds ratio 0.86, 95% confidence interval 0.45 to 1.63). For total omega-6 fatty acids the odds ratio was 0.46 (95% confidence interval 0.23 to 0.92), although there was suggestion of a slight increase in risk of preeclampsia associated with high levels of arachidonic acid. Among women in the highest quartile for arachidonic acid the odds ratio was 1.29 (95% confidence interval 0.66 to 2.54). A strong statistically significant positive association of diunsaturated fatty acids with a trans double bond with risk of preeclampsia was observed. Women in the upper quartile of 9-cis 12-trans octadecanoic acid (C(18:2n6ct)) compared with those in the lowest quartile experienced a 3-fold higher risk of preeclampsia (odds ratio = 3.02, 95% confidence interval 1.41 to 6.45). Among women in the highest quartile for 9-trans 12-cis octadecanoic acid (C(18:2n6tc)) the odds ratio was 3.32 (95% confidence interval 1.55 to 7.13). Monounsaturated trans fatty acids were also positively associated with the risk of preeclampsia, although of much reduced magnitude. We observed a strong positive association of trans fatty acids, particularly diunsaturated trans fatty acids, with the risk of preeclampsia. We found little support for the hypothesized inverse association between omega-3 fatty acids and preeclampsia risk in this population. Polyunsaturated fatty acids, particularly omega-3 fatty acids, were comparatively lower in Zimbabwean than among US pregnant women. Given the limited inter-person variation in omega-3 fatty acids among Zimbabwean women, our sample size may be too small to adequately assess the relation in this population.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 134-135
Author(s):  
Artemis P Simopoulos

Abstract Human beings evolved on a diet that was balanced in the omega-6 and omega-3 essential fatty acids to which their genes were programmed to respond. Studies on gene-nutrient interactions using methods from molecular biology and genetics have clearly shown that there are genetic differences in the population, as well as differences in the frequency of genetic variations that interact with diet and influence the growth and development of humans and animals, as well as overall health and chronic disease. Nutrigenetics refers to studies on the role of genetic variants and their response to diet. For example, persons with genetic variants in the metabolism of omega-6 and omega-3 fatty acids have different levels of arachidonic acid (AA) and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) based on the type of genetic variant in the Fatty Acid Desaturase 1 (FADS1) and Fatty Acid Desaturase 2 (FADS2). At the same level of linoleic acid (LA) and alpha-linolenic acid (ALA) a person with a genetic variant that increases the activity of the FADS1 will have a higher AA in the red cell membrane phospholipids and a higher risk for obesity and cardiovascular disease. Nutrigenomics refers to how nutrients (diets) influence the expression of genes. For example, diets rich in omega-3 fatty acids, EPA and DHA decrease the expression of inflammatory genes and as a result decrease the risk of obesity and cardiovascular disease. Thus, through studies on Nutrigenetics/Nutrigenomics nutritional science stands at its “golden threshold” where personalized nutrition is the future, to improve an individual’s health.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 339-340
Author(s):  
Sergiane A Araújo ◽  
Ronaldo L Oliveira ◽  
Analívia M Barbosa ◽  
Aline R Silva ◽  
Rebeca D X Ribeiro ◽  
...  

Abstract Lauric acid (LA) is an additive used in ruminant’s diet with the purpose of mitigating the methane effect. However, the presence of a certain amount of LA in the rumen can cause a reduction in the microbial population and ruminal metabolic processes, such as the biohydrogenation. This study aimed evaluate the effect of the LA inclusion in the diet of Nellore on the fatty acids profile of the meat. Thirty-two young Nellore bulls were used with an average age of 24-months. The animals were individually fed with a total mixed ration with 40% of roughage (Cynodon sp. hay) and 60% of concentrated mix, composed with ground corn, soybean meal, urea, mineral premix and LA in 0.0; 0.5; 1.0; 1.5% of inclusion in the total diet dry matter basis. Those amounts constituted the treatments. At the end of the trial, the animals were slaughtered and the meat was stored at -21oC, before analyses. The experimental design was completely randomized, with four treatments and eight replications. The data were submitted to regression analysis, and significance was declared when P < 0.05. There was no effect (P > 0.05) of the inclusion of LA in the sum of saturated fatty acids (∑SAF=43.45±1.55), monounsaturated fatty acids (∑MUFA=41.9±0.29), and polyunsaturated fatty acids (∑PUFA=12.25±1.40). The inclusion of LA in the diets also did not affect the sum of omega-3 fatty acids (∑ n-3=1.05±0.22), omega-6 fatty acids (∑ n-6=3.02±0.49, and the reason n-6: n-3 (2.91±0.12). The atherogenicity (0.65±0.05) and trombogenicity (1.47±0.10) indexes, important indexes to predict heart coronary diseases risk, were not affected by the inclusion of LA in the diet of the animals. The results suggest that LA can be included up to 1.5% (DM basis of total diet) in the diets of Nellore without causing any significant changes in the fatty acids profile of the meat.


Sign in / Sign up

Export Citation Format

Share Document