Suppression of HOX A cluster genes inhibits proliferation and induces cell death in human mixed-lineage leukemias

2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 14020-14020
Author(s):  
J. Faber ◽  
A. Krivtsov ◽  
M. Stubbs ◽  
R. Wright ◽  
M. van den Heuvel-Eibrink ◽  
...  

14020 Background: Leukemias harboring translocations of the mixed lineage leukemia locus (MLL) are generally associated with poor clinical prognosis. Using gene expression profiling we and others have previously shown that Homeobox (HOX) A cluster genes are highly expressed in leukemias with MLL rearrangements. Methods: Here we studied the role of aberrant HOXA9 expression in human MLL- rearranged and non-rearranged leukemias utilizing an shRNA mediated knockdown approach. Results: Three different shRNA constructs targeting human HOXA9 were synthesized and stably introduced into t(9;11) MOLM14 cells utilizing a lentiviral vector system. 75–80% HOXA9 RNA knockdown was confirmed by quantitative PCR and Western Blot analysis. In a panel of 17 AML/ALL cell lines (7 MLL rearranged, 10 non rearranged), HOXA9 directed shRNA inhibited cell proliferation starting as early as 48h after transduction, and induced apoptosis beginning at 72h. Interestingly, impaired cell proliferation and induction of apoptosis was significantly higher in the MLL rearranged cell lines (mean viability: 51.88%) than in the non-rearranged cells (mean viability: 90.98%; p=0.007) and also significantly correlated with the baseline HOXA9 mRNA expression before knockdown (R= 0.8, p=0.00017). We then further analyzed the effect of HOXA9 knockdown in MLL rearranged and non-rearranged primary human AML cells. Similar to our findings in cell lines, a marked induction of cell death was observed, which was significantly higher in leukemias with an MLL translocation (p=0.005) and also significantly correlated with the baseline HOXA9 mRNA expression (R= 0.8, p=0.001). Next, the in vivo effect of HOXA9 knockdown was assessed by transplanting luciferase-expressing SEMK2 (t4;11) cells into SCID-beige mice followed by in vivo bioluminescent imaging. Leukemia burden was significantly reduced in HOXA9 shRNA treated mice (n=10) with a peak difference at day 15 (p=0.000059) shortly before mice of the control group (n=10) succumbed from overt leukemia. At this point all mice of the HOXA9 shRNA treated group were still healthy with no signs of leukemia. Conclusions: Taken together our data implicates that depletion of HOXA9 might be a novel approach for targeted therapy in human MLL rearranged leukemias. No significant financial relationships to disclose.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 734-734
Author(s):  
Jorg Faber ◽  
Andrei V. Krivtsov ◽  
Matthew C. Stubbs ◽  
Renee Wright ◽  
Marry van den Heuvel-Eibrink ◽  
...  

Abstract Homeobox containing (Hox) genes are implicated in the regulation of normal and leukemic hematopoesis. Using gene expression profiling we and others have previously shown that HoxA9 is highly expressed in lymphoid and myeloid leukemias harboring MLL translocations and that high level HoxA9 expression is associated with poor clinical prognosis. Furthermore, HoxA9 plays variable roles in MLL-fusion induced murine leukemias. In this study we aimed to elucidate the role of aberrant HoxA9 expression in human MLL-rearranged and non-rearranged leukemia’s utilizing an shRNA mediated knockdown approach. To establish an efficient knockdown assay three different shRNA constructs targeting human HoxA9 were synthesized and stably introduced into t(9;11) MOLM14 cells utilizing a lentiviral vector system. The shRNA construct which showed highest efficiency as measured by Taqman quantitative PCR (75–80% knockdown MLL-AF9 RNA) and Western Blot analysis was used for further experiments. In MOLM-14 cells, HoxA9 directed shRNA inhibited cell proliferation starting as early as 48h after transduction as determined by MTT assay, and at 72h demonstrated a markedly increased number of apoptotic cells as measured by Annexin V staining. This effect was rescued by introducing a non-targetable exogenous HoxA9 in MOLM-14 cells. To investigate if the HoxA9 knockdown related effects are specific for MLL rearranged cells we next analyzed cell growth and viability in 17 AML/ALL cell lines (7 MLL-rearranged, 10 non rearranged) after shRNA mediated HoxA9 knockdown. Interestingly, impaired cell proliferation and induction of apoptosis was significantly higher in the MLL rearranged cell lines (mean viability: 51.88%) than in the non-rearranged cells (mean viability: 90.98%; p=0.007). Moreover, the effect was also significantly correlated with the baseline HoxA9 mRNA expression before knockdown, with the greatest effect in cell lines expressing the highest HoxA9 levels (R= 0.8, p=0.00017). These findings prompted us to further analyze the effect of HoxA9 knockdown in MLL rearranged and non-rearranged primary human AML cells (6 MLL rearranged, 6 MLL germline). Similar to our findings in cell lines, we found a significantly higher effect on cell proliferation/viability in association with the presence of an MLL translocation (p=0.005) and a significant correlation with the baseline HoxA9 mRNA expression (R= 0.8, p=0.001). Next, we assessed the in vivo effect of HoxA9 knock down by transplanting luciferase-expressing SEMK2 (t4;11) cells and subsequent bioluminescent imaging. SEMK2 cells were transduced with either HoxA9 directed or control shRNA and intravenously injected into SCID-beige mice. Reconstitution was confirmed by in vivo bioluminescent imaging. 34 days after transplantation all mice in the HoxA9 shRNA group (n=4) are still alive with no signs of leukemia whereas all mice in the control group (n=3) have succumbed. Taken together our data implicates an important role for aberrant HoxA9 expression in human MLL rearranged leukemia cells.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2368-2368
Author(s):  
Luise A de Albuquerque Simoes ◽  
Isabel Weinhäuser ◽  
Diego A Pereira-Martins ◽  
César Alexander Ortiz Rojas ◽  
Thiago Mantello Bianco ◽  
...  

Abstract Accumulating evidence suggest that the axon guidance molecules SLIT and ROBO are not only implicated in physiological process but also in cancer progression. Depending on the type of cancer the SLIT-ROBO axis can either act as a tumor suppressor gene, in which case the SLIT2 promoter site is frequently hypermethylated or as an oncogene, whereby high expression is often associated with poor prognosis. In the context of acute myeloid leukemia (AML), low expression of SLIT2 has been associated with low overall survival (OS) (Golos et al., 2019), while the functional role of SLIT2 remains largely unknown. Recently, we showed that the knockdown of SLIT2 increased cell proliferation of acute promyelocytic leukemia (APL) cells resulting in a more aggressive course of disease progression in vivo using the murine transgenic APL model (Weinhäuser et al., 2020). Here, we aimed to study the functional role of SLIT2 in a more heterogeneous disease, such as AML. Using different publicly available datasets. (GSE58477, normal karyotype blasts: 62, healthy CD34 +: 10; GSE63409, LSC: 14, HSC: 5) we detected increased methylation at the SLIT2 promoter site of AML leukemic cells compared to healthy CD34 + cells suggesting SLIT2 tumor suppressive functions. In addition, we measured decreased levels of SLIT2 in the bone marrow (BM) plasma of AML patients compared to healthy donors. To assess the biological role of SLIT2, we treated AML cell lines (KASUMI1, MV411, and MOLM13) with recombinant SLIT2 (50 ng/mL) in vitro. Administration of SLIT2 reduced AML cell growth, colony formation and induced cell cycle arrest in the G1 phase for all AML cell lines. Conversely, the knockdown of SLIT2 promoted increased THP-1 and OCI-AML3 cell proliferation. Next, we determined whether the treatment with SLIT2 could delay leukemogenesis in vivo using the AML cell line MV4-11. Engraftment was monitored by luciferase bioluminescent signal and NSGS mice were either treated with recombinant SLIT2 using a dose of 25 ng/g of body weight or vehicle (control group). SLIT2 therapy resulted in a lower disease burden, decreased leukemic infiltration in the BM and spleen, reduced spleen size, and increased OS compared to the control group (p<0.05). In conclusion, we showed that SLIT2 methylation is recurrent in AML patients and that the level of SLIT2 in the plasma of AML patients is reduced. Moreover, SLIT2 treatment appears to have a cytostatic effect on different AML cell lines delaying leukemogenesis in vivo. Overall, our study reveals the therapeutic potential of SLIT2 in hematological malignancies, which could be used as an adjuvant in the clinic. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 111 (11) ◽  
pp. 1216-1227 ◽  
Author(s):  
Motonari Nomura ◽  
Nino Rainusso ◽  
Yi-Chien Lee ◽  
Brian Dawson ◽  
Cristian Coarfa ◽  
...  

Abstract Background The Wnt/β-catenin pathway is closely associated with osteosarcoma (OS) development and metastatic progression. We investigated the antitumor activity of Tegavivint, a novel β-catenin/transducin β-like protein 1 (TBL1) inhibitor, against OS employing in vitro, ex vivo, and in vivo cell line and patient-derived xenograft (PDX) models that recapitulate high risk disease. Methods The antitumor efficacy of Tegavivint was evaluated in vitro using established OS and PDX-derived cell lines. Use of an ex vivo three-dimensional pulmonary metastasis assay assessed targeting of β-catenin activity during micro- and macrometastatic development. The in vivo activity of Tegavivint was evaluated using chemoresistant and metastatic OS PDX models. Gene and protein expression were quantified by quantitative Reverse transcription polymerase chain reaction or immunoblot analysis. Bone integrity was determined via microCT. All statistical tests were two-sided. Results Tegavivint exhibited antiproliferative activity against OS cells in vitro and actively reduced micro- and macrometastatic development ex vivo. Multiple OS PDX tumors (n = 3), including paired patient primary and lung metastatic tumors with inherent chemoresistance, were suppressed by Tegavivint in vivo. We identified that metastatic lung OS cell lines (n = 2) exhibited increased stem cell signatures, including enhanced concomitant aldehyde dehydrogenase (ALDH1) and β-catenin expression and downstream activity, which were suppressed by Tegavivint (ALDH1: control group, mean relative mRNA expression = 1.00, 95% confidence interval [CI] = 0.68 to 1.22 vs Tegavivint group, mean = 0.011, 95% CI = 0.0012 to 0.056, P < .001; β-catenin: control group, mean relative mRNA expression = 1.00, 95% CI = 0.71 to 1.36 vs Tegavivint group, mean = 0.45, 95% CI = 0.36 to 0.52, P < .001). ALDH1high PDX-derived lung OS cells, which demonstrated enhanced metastatic potential compared with ALDHlow cells in vivo, were sensitive to Tegavivint. Toxicity studies revealed decreased bone density in male Tegavivint-treated mice (n = 4 mice per group). Conclusions Tegavivint is a promising therapeutic agent for advanced stages of OS via its targeting of the β-catenin/ALDH1 axis.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3804-3804
Author(s):  
Jihane C Khalife ◽  
Hanna S Radomska ◽  
Jennifer Saultz ◽  
Ramasamy Santhanam ◽  
Xiaomeng Huang ◽  
...  

Abstract microRNA-155 (miR-155) is a short non-coding RNA that is associated with aggressive cancers and known to promote leukemogenesis. Recently, we have reported that aberrant miR-155 upregulation independently identifies high-risk cytogenetically normal AML patients, suggesting that this miR may also serve as a novel therapeutic target in AML. We and others have shown that miR-155 is positively regulated by NF-kB, a transcription factor that is constitutively activated in leukemic blasts and contributes to their aberrant proliferation and survival. MLN4924 (Millennium Pharmaceuticals Inc) is a novel drug that blocks neddylation and subsequent degradation of the NFkB inhibitor, IkBa, thereby inhibiting translocation of NF-kB to the nucleus. MLN4924 has demonstrated promising activity in early clinical trials for AML. We postulated that downregulation of miR-155 via NF-kB inhibition is at least in part responsible for the antileukemic activity of MLN4924. Methods AML cell lines and primary blasts were treated with 100-1000nM MLN4924 for 3-72 hrs. Messenger RNA and protein levels were determined by quantitative RT-PCR and immunoblotting, respectively. NF-kB activity was measured by luciferase reporter assays. Binding of NF-kB to the miR-155 promoter was detected by electromobility shift assay and Chromatin Immunoprecipitation. Transfection of miR-155 was performed using the siPORT TM NeoFXTM method. Apoptosis was assessed by Annexin V staining. For in vivo studies, we used NOD/SCID/g mice engrafted with MV4-11 cells. Two weeks after transplantation, the engrafted mice received intraperitoneal treatments of 180 mg/kg of MLN4924 every other day for 21 days. Mice in the control group were treated similarly with the vehicle alone (20% 2-hydroxypropyl-betacyclodextrin). Results In AML cell lines and primary AML patient blasts 12hr treatment with MLN4924 resulted in a ∼50% decrease of miR-155 expression at 300nM in THP-1 and MV4-11 cells and at 500nM in AML blasts (p<0.01). This was concomitant with a ∼ 50% and 70% decrease in NF-kB activity and binding to miR-155 promoter, respectively (p<0.01). These results correlated with a significant upregulation of mRNA levels of the key miR-155 target gene, SHIP1 [6-fold (p<0.05), 9-fold (p<0.01), and 2-fold (p<0.05) in THP-1 cells, MV4-11 cells, and AML patient blasts, respectively]. SHIP1 protein levels were increased in all samples as well. SHIP1 is a tyrosine phosphatase that blocks PI3K-mediated membrane localization of AKT, which is often aberrantly activated in human cancers, including leukemia. Thus, we postulated that MLN4924-induced upregulation of SHIP1 via miR-155 downregulation would also result in PI3K/AKT pathway inhibition. As predicted, MLN4924 treatment of AML cell lines and primary blasts resulted in inhibition of the active AKT, as evidenced by a decline of phospho-AKTThr308 levels. Furthermore, the pharmacologic activity of MLN4924 was inhibited by forced expression of miR-155 in THP-1 cells and AML blasts, as shown by a partial loss of SHIP1 upregulation and caspase-3 activation, thus preventing MLN4924-triggered induction of apoptosis (p<0.01) and decrease in cell viability (p<0.05). In vivo, mature miR-155 levels in the peripheral blood of xenografted mice decreased by 50% after 24hrs and 80% after 48hrs (p<0.01) from the first dose of MLN4924. Moreover, 21 days from the start of MLN4924 treatment, the average white blood cell count was significantly lower in the MLN4924-treated group (5,333 cells/ul ± 1040) compared with the vehicle-treated group (36,166 cells/ul ± 10,598; p< 0.01). The average spleen weight was also dramatically reduced in the MLN4924-treated group (58.06 mg ±12.74) compared with the control group (305.66 mg ±51.1; p<0.01). Importantly, MLN4924 significantly prolonged the survival of leukemic mice; median survival was 45.5 vs. 31 days for MLN4924-treated vs. control groups (p<0.0001, n=10 per group), respectively. Conclusions We showed that MLN4924 treatment of AML cells in vitro and in vivo resulted in decreased miR-155 expression, reactivation of its target gene, SHIP1, and concomitant inhibition of PI3K/AKT pathway. Our data also support that miR-155 downregulation is a critical component of MLN4924’s antileukemic activity. Thus, our work provides novel insight into MLN4924’s mechanism of action and the rationale for combining this drug with emerging anti-microRNA compounds. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 15 (1) ◽  
pp. 70-77
Author(s):  
Junhe Zhang ◽  
Weihua Dong

Background: Esophageal carcinoma is one of the common malignant tumors in digestive tract. BECLIN-1 is a key gene that regulates autophagy, and its abnormal expression may be related with many human tumors. However, the mechanism of BECLIN-1 in esophageal carcinoma remains unknown. Objective: In this study, we explored the effect of BECLIN-1 overexpression on tumor growth in mice with esophageal carcinoma and its mechanism. Methods: Recombined lentiviral vector containing BECLIN-1 was used to transfect human esophageal carcinoma Eca109 cells and establish stable cell line. qRT-PCR was used to detect BECLIN-1 mRNA level in the transfected Eca109 cells, CCK-8 assay was used to detect cell proliferation. Beclin-1, P62 and LC3-II protein expression levels in Eca109 cells were detected using Western blot analysis. Subcutaneous xenograft nude mice model of human esophageal carcinoma was established, and the tumor growths in Beclin-1 group, control group and empty vector group were monitored. Beclin-1 protein expression in vivo was detected by immunohistochemistry. Results: Beclin-1 mRNA and protein were overexpressed in Eca109 cells. Compared with empty vector group, the growth rate of cells transfected with BECLIN-1 decreased significantly. Compared with the control group and empty vector group, the expression level of P62 protein in beclin-1 group was significantly decreased, while the expression level of LC3-II protein was significantly increased. The tumor growth rate in nude mice of Beclin-1 group was significantly lower than that of the control group and empty vector group, and Beclin-1 protein was mainly expressed in Beclin-1 group in vivo. Conclusion: BECLIN-1 can induce autophagy in esophageal carcinoma Eca109 cells, and it can significantly inhibit the growth of esophageal carcinoma.


Author(s):  
Hana M. Hammad ◽  
Amer Imraish ◽  
Maysa Al-Hussaini ◽  
Malek Zihlif ◽  
Amani A. Harb ◽  
...  

Objective: Achillea fragrantissima L. (Asteraceae) is a traditionally used medicinal herb in the rural communities of Jordan. Methods: The present study evaluated the efficacy of the ethanol extract of this species on angiogenesis in both, ex vivo using rat aortic ring assay and in vivo using rat excision wound model. Results: In concentrations of 50 and 100 µg/ml, the ethanol extract showed angiogenic stimulatory effect and significantly increased length of capillary protrusions around aorta rings of about 60% in comparison to those of untreated aorta rings. In MCF-7 cells, the ethanol extract of A. fragrantissima stimulates the production of VEGF in a dose-dependent manner. 1% and 5% of ethanol extract of A. fragrantissima containing vaseline based ointment was applied on rat excision wounds for six days and was found to be effective in wound healing and maturation of the scar. Both preparations resulted in better wound healing when compared to the untreated control group and vaseline-treated group. This effect was comparable to that induced by MEBO, the positive control. Conclusion: The results indicate that A. fragrantissima has a pro-angiogenic effect, which may act through the VEGF signaling pathway.


Author(s):  
Joon M. Jung ◽  
Hae K. Yoon ◽  
Chang J. Jung ◽  
Soo Y. Jo ◽  
Sang G. Hwang ◽  
...  

Cold plasma can be beneficial for promoting skin wound healing and has a high potential of being effectively used in treating various wounds. Our aim was to verify the effect of cold plasma in accelerating wound healing and investigate its underlying mechanism in vitro and in vivo. For the in vivo experiments, 2 full-thickness dermal wounds were created in each mouse (n = 30). While one wound was exposed to 2 daily plasma treatments for 3 min, the other wound served as a control. The wounds were evaluated by imaging and histological analyses at 4, 7, and 11 days post the wound infliction process. Immunohistochemical studies were also performed at the same time points. In vitro proliferation and scratch assay using HaCaT keratinocytes and fibroblasts were performed. The expression levels of wound healing–related genes were analyzed by real-time polymerase chain reaction and western blot analysis. On day 7, the wound healing rates were 53.94% and 63.58% for the control group and the plasma-treated group, respectively. On day 11, these rates were 76.05% and 93.44% for the control and plasma-treated groups, respectively, and the difference between them was significant ( P = .039). Histological analysis demonstrated that plasma treatment promotes the formation of epidermal keratin and granular layers. Immunohistochemical studies also revealed that collagen 1, collagen 3, and alpha-smooth muscle actin appeared more abundantly in the plasma-treated group than in the control group. In vitro, the proliferation of keratinocytes was promoted by plasma exposure. Scratch assay showed that fibroblast exposure to plasma increased their migration. The expression levels of collagen 1, collagen 3, and alpha-smooth muscle actin were elevated upon plasma treatment. In conclusion, cold plasma can accelerate skin wound healing and is well tolerated.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masarra M. Sakr ◽  
Walid F. Elkhatib ◽  
Khaled M. Aboshanab ◽  
Eman M. Mantawy ◽  
Mahmoud A. Yassien ◽  
...  

AbstractFailure in the treatment of P. aeruginosa, due to its broad spectrum of resistance, has been associated with increased patient mortality. One alternative approach for infection control is quorum quenching which was found to decrease virulence of such pathogen. In this study, the efficiency of a recombinant Ahl-1 lactonase formulated as a hydrogel was investigated to control the infection of multidrug resistant (MDR) P. aeruginosa infected burn using a murine model. The recombinant N-acylhomoserine lactonase (Ahl-1) was formulated as a hydrogel. To test its ability to control the infection of MDR P. aeruginosa, a thermal injury model was used. Survival rate, and systemic spread of the infection were evaluated. Histopathological examination of the animal dorsal skin was also done for monitoring the healing and cellular changes at the site of infection. Survival rate in the treated group was 100% relative to 40% in the control group. A decrease of up to 3 logs of bacterial count in the blood samples of the treated animals relative to the control group and a decrease of up to 4 logs and 2.3 logs of bacteria in lung and liver samples, respectively were observed. Histopathological examination revealed more enhanced healing process in the treated group. Accordingly, by promoting healing of infected MDR P. aeruginosa burn and by reducing systemic spread of the infection as well as decreasing mortality rate, Ahl-1 hydrogel application is a promising strategy that can be used to combat and control P. aeruginosa burn infections.


Author(s):  
He Zhu ◽  
Hongwei Zhang ◽  
Youliang Pei ◽  
Zhibin Liao ◽  
Furong Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a common type of malignant human cancer with high morbidity and poor prognosis, causing numerous deaths per year worldwide. Growing evidence has been demonstrated that long non-coding RNAs (lncRNAs) are closely associated with hepatocarcinogenesis and metastasis. However, the roles, functions, and working mechanisms of most lncRNAs in HCC remain poorly defined. Methods Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of CCDC183-AS1 in HCC tissues and cell lines. Cell proliferation, migration and invasion ability were evaluated by CCK-8 and transwell assay, respectively. Animal experiments were used to explore the role of CCDC183-AS1 and miR-589-5p in vivo. Bioinformatic analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the regulatory relationship between CCDC183-AS1, miR-589-5p and SKP1. Results Significantly upregulated expression of CCDC183-AS1 was observed in both HCC tissues and cell lines. HCC patients with higher expression of CCDC183-AS1 had a poorer overall survival rate. Functionally, overexpression of CCDC183-AS1 markedly promoted HCC cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas the downregulation of CCDC183-AS1 exerted opposite effects. MiR-589-5p inhibitor counteracted the proliferation, migration and invasion inhibitory effects induced by CCDC183-AS1 silencing. Mechanistically, CCDC183-AS1 acted as a ceRNA through sponging miR-589-5p to offset its inhibitory effect on the target gene SKP1, then promoted the tumorigenesis of HCC. Conclusions CCDC183-AS1 functions as an oncogene to promote HCC progression through the CCDC183-AS1/miR-589-5p/SKP1 axis. Our study provided a novel potential therapeutic target for HCC patients.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Malinee Thanee ◽  
Sureerat Padthaisong ◽  
Manida Suksawat ◽  
Hasaya Dokduang ◽  
Jutarop Phetcharaburanin ◽  
...  

Abstract Background Sulfasalazine (SSZ) is widely known as an xCT inhibitor suppressing CD44v9-expressed cancer stem-like cells (CSCs) being related to redox regulation. Cholangiocarcinoma (CCA) has a high recurrence rate and no effective chemotherapy. A recent report revealed high levels of CD44v9-positive cells in CCA patients. Therefore, a combination of drugs could prove a suitable strategy for CCA treatment via individual metabolic profiling. Methods We examined the effect of xCT-targeted CD44v9-CSCs using sulfasalazine combined with cisplatin (CIS) or gemcitabine in CCA in vitro and in vivo models and did NMR-based metabolomics analysis of xenograft mice tumor tissues. Results Our findings suggest that combined SSZ and CIS leads to a higher inhibition of cell proliferation and induction of cell death than CIS alone in both in vitro and in vivo models. Xenograft mice showed that the CD44v9-CSC marker and CK-19-CCA proliferative marker were reduced in the combination treatment. Interestingly, different metabolic signatures and significant metabolites were observed in the drug-treated group compared with the control group that revealed the cancer suppression mechanisms. Conclusions SSZ could improve CCA therapy by sensitization to CIS through killing CD44v9-positive cells and modifying the metabolic pathways, in particular tryptophan degradation (i.e., kynurenine pathway, serotonin pathway) and nucleic acid metabolism.


Sign in / Sign up

Export Citation Format

Share Document