Ethanol Extract of Achillea fragrantissima Enhances Angiogenesis through Stimulation of VEGF Production

Author(s):  
Hana M. Hammad ◽  
Amer Imraish ◽  
Maysa Al-Hussaini ◽  
Malek Zihlif ◽  
Amani A. Harb ◽  
...  

Objective: Achillea fragrantissima L. (Asteraceae) is a traditionally used medicinal herb in the rural communities of Jordan. Methods: The present study evaluated the efficacy of the ethanol extract of this species on angiogenesis in both, ex vivo using rat aortic ring assay and in vivo using rat excision wound model. Results: In concentrations of 50 and 100 µg/ml, the ethanol extract showed angiogenic stimulatory effect and significantly increased length of capillary protrusions around aorta rings of about 60% in comparison to those of untreated aorta rings. In MCF-7 cells, the ethanol extract of A. fragrantissima stimulates the production of VEGF in a dose-dependent manner. 1% and 5% of ethanol extract of A. fragrantissima containing vaseline based ointment was applied on rat excision wounds for six days and was found to be effective in wound healing and maturation of the scar. Both preparations resulted in better wound healing when compared to the untreated control group and vaseline-treated group. This effect was comparable to that induced by MEBO, the positive control. Conclusion: The results indicate that A. fragrantissima has a pro-angiogenic effect, which may act through the VEGF signaling pathway.

Author(s):  
Joon M. Jung ◽  
Hae K. Yoon ◽  
Chang J. Jung ◽  
Soo Y. Jo ◽  
Sang G. Hwang ◽  
...  

Cold plasma can be beneficial for promoting skin wound healing and has a high potential of being effectively used in treating various wounds. Our aim was to verify the effect of cold plasma in accelerating wound healing and investigate its underlying mechanism in vitro and in vivo. For the in vivo experiments, 2 full-thickness dermal wounds were created in each mouse (n = 30). While one wound was exposed to 2 daily plasma treatments for 3 min, the other wound served as a control. The wounds were evaluated by imaging and histological analyses at 4, 7, and 11 days post the wound infliction process. Immunohistochemical studies were also performed at the same time points. In vitro proliferation and scratch assay using HaCaT keratinocytes and fibroblasts were performed. The expression levels of wound healing–related genes were analyzed by real-time polymerase chain reaction and western blot analysis. On day 7, the wound healing rates were 53.94% and 63.58% for the control group and the plasma-treated group, respectively. On day 11, these rates were 76.05% and 93.44% for the control and plasma-treated groups, respectively, and the difference between them was significant ( P = .039). Histological analysis demonstrated that plasma treatment promotes the formation of epidermal keratin and granular layers. Immunohistochemical studies also revealed that collagen 1, collagen 3, and alpha-smooth muscle actin appeared more abundantly in the plasma-treated group than in the control group. In vitro, the proliferation of keratinocytes was promoted by plasma exposure. Scratch assay showed that fibroblast exposure to plasma increased their migration. The expression levels of collagen 1, collagen 3, and alpha-smooth muscle actin were elevated upon plasma treatment. In conclusion, cold plasma can accelerate skin wound healing and is well tolerated.


2018 ◽  
Vol 239 (3) ◽  
pp. 377-388 ◽  
Author(s):  
Rumana Yasmeen ◽  
Qiwen Shen ◽  
Aejin Lee ◽  
Jacob H Leung ◽  
Devan Kowdley ◽  
...  

Adipokine leptin regulates neuroendocrine circuits that control energy expenditure, thermogenesis and weight loss. However, canonic regulators of leptin secretion, such as insulin and malonyl CoA, do not support these processes. We hypothesize that epiregulin (EREG), a growth factor that is secreted from fibroblasts under thermogenic and cachexia conditions, induces leptin secretion associated with energy dissipation. The effects of EREG on leptin secretion were studied ex vivo, in the intra-abdominal white adipose tissue (iAb WAT) explants, as well as in vivo, in WT mice with diet-induced obesity (DIO) and in ob/ob mice. These mice were pair fed a high-fat diet and treated with intraperitoneal injections of EREG. EREG increased leptin production and secretion in a dose-dependent manner in iAb fat explants via the EGFR/MAPK pathway. After 2 weeks, the plasma leptin concentration was increased by 215% in the EREG-treated group compared to the control DIO group. EREG-treated DIO mice had an increased metabolic rate and core temperature during the active dark cycle and displayed cold-induced thermogenesis. EREG treatment reduced iAb fat mass, the major site of leptin protein production and secretion, but did not reduce the mass of the other fat depots. In the iAb fat, expression of genes supporting mitochondrial oxidation and thermogenesis was increased in EREG-treated mice vs control DIO mice. All metabolic and gene regulation effects of EREG treatment were abolished in leptin-deficient ob/ob mice. Our data revealed a new role of EREG in induction of leptin secretion leading to the energy expenditure state. EREG could be a potential target protein to regulate hypo- and hyperleptinemia, underlying metabolic and immune diseases.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7670
Author(s):  
Paola Estefanía García-Badillo ◽  
Anaguiven Avalos-Soriano ◽  
Josué López-Martínez ◽  
Teresa García-Gasca ◽  
Jesús Eduardo Castro-Ruiz

Angiogenesis, the formation of new blood vessels, underlies tissue development and repair. Some medicinal plant-derived compounds can modulate the angiogenic response. Heliopsis longipes, a Mexican medicinal plant, is widely used because of its effects on pain and inflammation. The main bioactive phytochemicals from H. longipes roots are alkamides, where affinin is the most abundant. Scientific studies show various medical effects of organic extracts of H. longipes roots and affinin that share some molecular pathways with the angiogenesis process, with the vasodilation mechanism of action being the most recent. This study investigates whether pure affinin and the ethanolic extract from Heliopsis longipes roots (HLEE) promote angiogenesis. Using the aortic ring rat assay (ex vivo method) and the direct in vivo angiogenesis assay, where angioreactors were implanted in CD1 female mice, showed that affinin and the HLEE increased vascular growth in a dose-dependent manner in both bioassays. This is the first study showing the proangiogenic effect of H. longipes. Further studies should focus on the mechanism of action and its possible therapeutic use in diseases characterized by insufficient angiogenesis.


2014 ◽  
Vol 34 (3) ◽  
pp. 260-265 ◽  
Author(s):  
F Yesildal ◽  
FN Aydin ◽  
S Deveci ◽  
S Tekin ◽  
I Aydin ◽  
...  

Angiogenesis is the process of generating new blood vessels from preexisting vessels and is considered essential in many pathological conditions. The purpose of the present study is to evaluate the effect of aspartame on angiogenesis in vivo chick chorioallantoic membrane (CAM) and wound-healing models as well as in vitro 2,3-bis-2 H-tetrazolium-5-carboxanilide (XTT) and tube formation assays. In CAM assay, aspartame increased angiogenesis in a concentration-dependent manner. Compared with the control group, aspartame has significantly increased vessel proliferation ( p < 0.001). In addition, in vivo rat model of skin wound-healing study showed that aspartame group had better healing than control group, and this was statistically significant at p < 0.05. There was a slight proliferative effect of aspartame on human umbilical vein endothelial cells on XTT assay in vitro, but it was not statistically significant; and there was no antiangiogenic effect of aspartame on tube formation assay in vitro. These results provide evidence that aspartame induces angiogenesis in vitro and in vivo; so regular use may have undesirable effect on susceptible cases.


2020 ◽  
Vol 24 (10) ◽  
pp. 3485-3500 ◽  
Author(s):  
C. Herrera-Vizcaíno ◽  
S. Al-Maawi ◽  
R. Sader ◽  
C. J. Kirkpatrick ◽  
J. Choukroun ◽  
...  

Abstract Background The present study evaluated the cellular tissue reaction of two equine-derived collagen hemostatic sponges (E-CHS), which differed in thickness after pressing, over 30 days in vivo. The inflammatory response during physiological wound healing in sham-operated animals was used as control group. Material and methods First, the E-CHS was pressed by applying constant pressure (6.47 ± 0.85 N) for 2 min using a sterile stainless-steel cylinder until the material was uniformly flattened. Consequently, the original (E-CHS), the pressed (P-E-CHS), as well as the control group (CG; sham operation) were studied independently. The 3 groups were evaluated in vivo after subcutaneous implantation in Wistar rats during 3, 15, and 30 days. Histochemical and immunohistochemical methods provided observations of biomaterial degradation rate, cellular inflammatory response, and vascularization pattern. A derivative of human blood known as platelet-rich fibrin (PRF) was used as an ex vivo model to simulate the initial biomaterial-cell interaction. Segments of E-CHS and P-E-CHS were cultivated for 3 and 6 days with PRF, and the release of pro-inflammatory proteins was measured using ELISA. PRF cultivated alone was used as a control group. Results At day 3, the CG induced a statistically significant higher presence of monocytes/macrophages (CD68+), pro-inflammatory macrophages (M1; CCR7+), and pro-wound healing macrophages (M2; CD206+) compared to E-CHS and P-E-CHS. At the same time point, P-E-CHS induced a statistically significant higher presence of CD68+ cells compared to E-CHS. After 15 days, E-CHS was invaded by cells and vessels and showed a faster disintegration rate compared to P-E-CHS. On the contrary, cells and vessels were located only in the outer region of P-E-CHS and the biomaterial did not lose its structure and accordingly did not undergo disintegration. The experimental groups induced similar inflammatory reaction primarily with positive pro-inflammatory CD68+/CCR7+ macrophages and a low presence of multinucleated giant cells (MNGCs). At this time point, significantly lower CD68+/CCR7+ macrophages and no MNGCs were detected within the CG when compared to the experimental groups (P < 0.05). After 30 days, E-CHS and P-E-CHS were fully degraded. All groups showed similar inflammatory reaction shifted to a higher presence CD206+ macrophages. A low number of CCR7+ MNGCs were still observable in the implantation bed of both experimental groups. In the ex vivo model, the cells and fibrin from PRF penetrated E-CHS. However, in the case of P-E-CHS, the cells and fibrin stayed on the surface and did not penetrate towards materials central regions. The cultivation of P-E-CHS with PRF induced a statically significant higher release of pro-inflammatory proteins compared to the CG and E-CHS after 3 days. Conclusion Altering the original presentation of a hemostatic sponge biomaterial by pressing modified the initial biomaterial-cell interaction, delayed the early biomaterial’s degradation rate, and altered the vascularization pattern. A pressed biomaterial seems to induce a higher inflammatory reaction at early time points. However, altering the biomaterial did not modify the polarization pattern of macrophages compared to physiologic wound healing. The ex vivo model using PRF was shown to be an effective model to simulate the initial biomaterial-cell interaction in vivo. Clinical relevance A pressed hemostatic sponge could be applied for guided tissue regeneration and guided bone regeneration. In that sense, within the limitations of this study, the results show that the same biomaterial may have two specific clinical indications.


2014 ◽  
Vol 2 (2) ◽  
pp. 217-221 ◽  
Author(s):  
J. M. Jacob ◽  
M. T. Olaleye ◽  
J. A. O. Olugbuyiro

Ethnopharmacological relevance: The dry leaf of Alchornea cordifolia (AC) is used, in traditional medicine in the S Nigeria, for the preparation of blood tonic, remedies for urinary, respiratory, liver and gas intestinal disorders. Aim of the study: This study investigated the protective property of AC leaf against liver damage in animals with a view to exploring its use for the treatment of hepatotoxicity in humans. Material and methods:  Ethanol extract of A. cordifolia was used to study the hepatoprotective activity in acetaminophen-induced Albino rats (150-200g). Animals in Group 1 served as vehicle control, Group 2 served as hepatotoxin (Acetaminophen 2g/kg treated) group, Groups 3 and 4 served as positive control (Vitamin E and Curcumin 100 mg/kg bw respectively) groups, and Groups 5-8 served as (200-500mg/kg bw) AC leaf extract treated groups while Group 9 served as normal group (AC extract only 300 mg/kg bw). Results: The hepatotoxic group showed hepatocytic necrosis, cellular infiltration and inflammation in the liver. The treatment group restored the liver cells to their normal lobular architecture in a dose dependent manner. The protection offered by the plant extract compared well with the standard antioxidant agents (Curcumin and Vitamin E). Tannins, flavonoids, alkaloids and saponins were detected in the phytochemical screening. Conclusion: Our findings suggest Alchornea cordifolia ethanol leaf extract as promising herpatoprotective herb and give credence to the folkloric use of this plant for the treatment of liver problems.DOI: http://dx.doi.org/10.3126/ijasbt.v2i2.10473Int J Appl Sci Biotechnol, Vol. 2(2): 217-221 


2015 ◽  
Vol 61 (2) ◽  
pp. 63-72
Author(s):  
Iman Asheghian Amiri ◽  
Hamid Reza Moslemi ◽  
Meysam Tehrani-Sharif ◽  
Khatereh Kafshdouzan

Summary Wound infection has become a major medical problem in recent years. This study was conducted to evaluate the healing activity of Capparis spinosa against surgical wounds infected by Escherichia coli. Twenty male rats were divided into two groups. Excisions were created surgically on the animals’ skin and then infected with E coli. Group 1 was treated with C spinosa while Group 2 was untreated. Wound biopsy specimens were collected on days 5, 10 and 16 and analyzed. Results showed that the hydroxyproline content in treatment group was significantly higher in various post wounding days. Protein content increased gradually in ten days. Results of histopathological studies showed moderate to intense granulation tissue formation in treated group on day 10. The histopathological studies showed, that the new epidermis in treated group was thicker than in control group on day 16 post wounding. The present study has demonstrated that ethanol extract of C spinosa includes properties that accelerate wound healing activities.


Author(s):  
Nhan Thi Thanh Nguyen ◽  
Can Minh Nguyen ◽  
Thuoc Linh Tran ◽  
Thao Thi Phuong Dang

Melicope pteleifolia (Champ. ex benth.) T.g. Hartley, a folk medicinal plant, is used by ethnic minorities in Bidoup–Nui Ba National Park, Lam Dong Province, Vietnam to treat effectively wound, inflammation and skin ulcer. To scientifically prove the claimed utilization and understand the mechanism of action of the plant, the in vitro and in vivo healing properties of the extract and fractions of the plant were investigated. The ethanol 70 % extract (50 – 400 mg/mL), aqueous (200 mg/mL), ethyl acetate (100 mg/mL) and petroleum ether (50 mg/mL) fractions were used to evaluate the antibacterial activities by using agar diffusion method. The healing properties were in vitro investigated through fibroblasts and keratinocytes proliferation and migration (7.8 g/mL to 250 g/mL in accordance with each extract and fraction). Besides, the macrophage-induced inhibition of the nitric oxide (NO) production was examined (15.6 – 62.5 g/mL). In addition, the excision wound model was used to test the wound healing activity on mice model. We found that the ethanol extract and the ethyl acetate fraction showed potent activity against Staphylococcus aureus, Enterococcus feacalis and Pseudomonas aeruginosa. The extract and fractions stimulated fibroblasts and keratinocytes proliferation in a concentration-dependent way. They also inhibited macrophage produce NO. In addition, mice treated by the extract formed scabs on wound excision of mice model faster than the control group. The wound healing efficiency seems to involve antibacterial, stimulating fibroblasts and keratinocytes proliferation, inhibition of macrophages produce NO.


2020 ◽  
Vol 21 (13) ◽  
pp. 4643
Author(s):  
Laura Parma ◽  
Hendrika A.B. Peters ◽  
Maria E. Johansson ◽  
Saray Gutiérrez ◽  
Henk Meijerink ◽  
...  

VEGFR2 and VEGF-A play a pivotal role in the process of angiogenesis. VEGFR2 activation is regulated by protein tyrosine phosphatases (PTPs), enzymes that dephosphorylate the receptor and reduce angiogenesis. We aim to study the effect of PTPs blockade using bis(maltolato)oxovanadium(IV) (BMOV) on in vivo wound healing and in vitro angiogenesis. BMOV significantly improves in vivo wound closure by 45% in C57BL/6JRj mice. We found that upon VEGFR2 phosphorylation induced by endogenously produced VEGF-A, the addition of BMOV results in increased cell migration (45%), proliferation (40%) and tube formation (27%) in HUVECs compared to control. In a mouse ex vivo, aortic ring assay BMOV increased the number of sprouts by 3 folds when compared to control. However, BMOV coadministered with exogenous VEGF-A increased ECs migration, proliferation and tube formation by only 41%, 18% and 12% respectively and aortic ring sprouting by only 1-fold. We also found that BMOV enhances VEGFR2 Y951 and p38MAPK phosphorylation, but not ERK1/2. The level of phosphorylation of these residues was the same in the groups treated with BMOV supplemented with exogenous VEGF-A and exogenous VEGF-A only. Our study demonstrates that BMOV is able to enhance wound closure in vivo. Moreover, in the presence of endogenous VEGF-A, BMOV is able to stimulate in vitro angiogenesis by increasing the phosphorylation of VEGFR2 and its downstream proangiogenic enzymes. Importantly, BMOV had a stronger proangiogenic effect compared to its effect in coadministration with exogenous VEGF-A.


Proceedings ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 18
Author(s):  
Kubra Erdogan ◽  
Onur Eroglu

Glioblastoma multiforme (GBM) is a type of cancer which has the highest mortality rate among brain cancers (1–2). Momordica charantia, known as bitter melon, is a plant its pharmacological activities and nutritional properties. Due to contains bioactive compounds, M. charantia is used for cancer treatments, inflammation-related diseases and diabetes (3–4). In this study, it was aimed to investigate the effects of M. charantia extract on cell viability, cytotoxicity and migration capacity in U87G cell line. U87G was cultured in DMEM-high glucose containing FBS 10% (v/v) and penisillin-streptomicin 1% (v/v). Cells were incubated at 37 °C in a humidified 5% CO2 incubator. The cytotoxic effect of M. charantia extract was determined by MTT analysis, cell viability by survival analysis and migration by wound-healing analysis. The results were evaluated by using ANOVA and GraphPad Prism7.0 program (GraphPad Software, La Jolla, CA, USA) in three replicates. IC50 value of M. charantia extract was found 750 μg/mL which is statistically significant (* p < 0.05). The extract had an increasing lethal effect at the 16.6% (24 h), 42.6% (48 h), 79.3% (72 h) and 91.6% (96 h). According to the wound-healing analysis, the wound closed at 24 h in the control group and the wound gradually increased depending on time in the extract treated group. According to the results, M. charantia extract has a cytotoxic and a significant anti-proliferative effect on U87G. It might be used as therapeutic agent against to GBM. However, in order to understand the effect of M. charantia in living organisms, in vivo experiments must be determined.


Sign in / Sign up

Export Citation Format

Share Document