Immune gene expression in primary melanomas to predict lower risk of recurrence and death.

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 3014-3014
Author(s):  
Shanthi Sivendran ◽  
Rui R. Chang ◽  
Sara Harcharik ◽  
Lawrence Hall ◽  
Sebastian Bernardo ◽  
...  

3014 Background: Improved biomarkers are needed to define recurrence risk in patients with completely resected skin melanomas. Standard prognostic indicators used in staging, including depth, ulceration, and mitotic rate, while useful, often fail to accurately predict recurrence for individual patients. The immune system may prevent recurrence in this population, but no evidence-based immune biomarkers are in clinical use. Biomarker development has been hindered by clinical standards necessitating that the entire specimen be formalin fixed and paraffin embedded (FFPE) for morphology evaluation, a process damaging to RNA. Methods: To define a biomarker for melanoma recurrence, mRNA copy number of immune-related genes from FFPE melanoma was measured using NanoString, a hybridization assay suited for analysis of partially degraded RNA. Genes predictive of non-recurrence were defined using receiver operating characteristic (ROC) curves in a training cohort and then validated in an independent patient cohort. Results: A panel of 21 genes predictive of non-recurrence were defined using ROC curves in a training cohort (N=44). This result was validated in an independent patient cohort (N=37, AUC=0.794). Protein levels of the most differentially expressed gene, CD2, also associated with non-recurrence (p<0.001). The immune gene panel and CD2 staining associated with prolonged survival (p<0.001 and p=0.019, respectively). Conclusions: mRNA copy number of immune-related genes in primary FFPE melanomas predicts non-recurrence and prolonged survival. This data highlights the impact of immunosurveillance in primary human melanoma and the identified gene panel may be a useful tool for patient stratification for adjuvant immunotherapy studies.

BIOCELL ◽  
2018 ◽  
Vol 42 (3) ◽  
pp. 87-91 ◽  
Author(s):  
Sergio LAURITO ◽  
Juan A. CUETO ◽  
Jimena PEREZ ◽  
Mar韆 ROQU�

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lin Chen ◽  
Yuxiang Dong ◽  
Yitong Pan ◽  
Yuhan Zhang ◽  
Ping Liu ◽  
...  

Abstract Background Breast cancer is one of the main malignant tumors that threaten the lives of women, which has received more and more clinical attention worldwide. There are increasing evidences showing that the immune micro-environment of breast cancer (BC) seriously affects the clinical outcome. This study aims to explore the role of tumor immune genes in the prognosis of BC patients and construct an immune-related genes prognostic index. Methods The list of 2498 immune genes was obtained from ImmPort database. In addition, gene expression data and clinical characteristics data of BC patients were also obtained from the TCGA database. The prognostic correlation of the differential genes was analyzed through Survival package. Cox regression analysis was performed to analyze the prognostic effect of immune genes. According to the regression coefficients of prognostic immune genes in regression analysis, an immune risk scores model was established. Gene set enrichment analysis (GSEA) was performed to probe the biological correlation of immune gene scores. P < 0.05 was considered to be statistically significant. Results In total, 556 immune genes were differentially expressed between normal tissues and BC tissues (p < 0. 05). According to the univariate cox regression analysis, a total of 66 immune genes were statistically significant for survival risk, of which 30 were associated with overall survival (P < 0.05). Finally, a 15 immune genes risk scores model was established. All patients were divided into high- and low-groups. KM survival analysis revealed that high immune risk scores represented worse survival (p < 0.001). ROC curve indicated that the immune genes risk scores model had a good reliability in predicting prognosis (5-year OS, AUC = 0.752). The established risk model showed splendid AUC value in the validation dataset (3-year over survival (OS) AUC = 0.685, 5-year OS AUC = 0.717, P = 0.00048). Moreover, the immune risk signature was proved to be an independent prognostic factor for BC patients. Finally, it was found that 15 immune genes and risk scores had significant clinical correlations, and were involved in a variety of carcinogenic pathways. Conclusion In conclusion, our study provides a new perspective for the expression of immune genes in BC. The constructed model has potential value for the prognostic prediction of BC patients and may provide some references for the clinical precision immunotherapy of patients.


Author(s):  
Elmo Christian Saarentaus ◽  
Aki Samuli Havulinna ◽  
Nina Mars ◽  
Ari Ahola-Olli ◽  
Tuomo Tapio Johannes Kiiskinen ◽  
...  

AbstractCopy number variants (CNVs) are associated with syndromic and severe neurological and psychiatric disorders (SNPDs), such as intellectual disability, epilepsy, schizophrenia, and bipolar disorder. Although considered high-impact, CNVs are also observed in the general population. This presents a diagnostic challenge in evaluating their clinical significance. To estimate the phenotypic differences between CNV carriers and non-carriers regarding general health and well-being, we compared the impact of SNPD-associated CNVs on health, cognition, and socioeconomic phenotypes to the impact of three genome-wide polygenic risk score (PRS) in two Finnish cohorts (FINRISK, n = 23,053 and NFBC1966, n = 4895). The focus was on CNV carriers and PRS extremes who do not have an SNPD diagnosis. We identified high-risk CNVs (DECIPHER CNVs, risk gene deletions, or large [>1 Mb] CNVs) in 744 study participants (2.66%), 36 (4.8%) of whom had a diagnosed SNPD. In the remaining 708 unaffected carriers, we observed lower educational attainment (EA; OR = 0.77 [95% CI 0.66–0.89]) and lower household income (OR = 0.77 [0.66–0.89]). Income-associated CNVs also lowered household income (OR = 0.50 [0.38–0.66]), and CNVs with medical consequences lowered subjective health (OR = 0.48 [0.32–0.72]). The impact of PRSs was broader. At the lowest extreme of PRS for EA, we observed lower EA (OR = 0.31 [0.26–0.37]), lower-income (OR = 0.66 [0.57–0.77]), lower subjective health (OR = 0.72 [0.61–0.83]), and increased mortality (Cox’s HR = 1.55 [1.21–1.98]). PRS for intelligence had a similar impact, whereas PRS for schizophrenia did not affect these traits. We conclude that the majority of working-age individuals carrying high-risk CNVs without SNPD diagnosis have a modest impact on morbidity and mortality, as well as the limited impact on income and educational attainment, compared to individuals at the extreme end of common genetic variation. Our findings highlight that the contribution of traditional high-risk variants such as CNVs should be analyzed in a broader genetic context, rather than evaluated in isolation.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter Higgins ◽  
Cooper A Grace ◽  
Soon A Lee ◽  
Matthew R Goddard

Abstract Saccharomyces cerevisiae is extensively utilized for commercial fermentation, and is also an important biological model; however, its ecology has only recently begun to be understood. Through the use of whole-genome sequencing, the species has been characterized into a number of distinct subpopulations, defined by geographical ranges and industrial uses. Here, the whole-genome sequences of 104 New Zealand (NZ) S. cerevisiae strains, including 52 novel genomes, are analyzed alongside 450 published sequences derived from various global locations. The impact of S. cerevisiae novel range expansion into NZ was investigated and these analyses reveal the positioning of NZ strains as a subgroup to the predominantly European/wine clade. A number of genomic differences with the European group correlate with range expansion into NZ, including 18 highly enriched single-nucleotide polymorphism (SNPs) and novel Ty1/2 insertions. While it is not possible to categorically determine if any genetic differences are due to stochastic process or the operations of natural selection, we suggest that the observation of NZ-specific copy number increases of four sugar transporter genes in the HXT family may reasonably represent an adaptation in the NZ S. cerevisiae subpopulation, and this correlates with the observations of copy number changes during adaptation in small-scale experimental evolution studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nora Siegal ◽  
Michal Gutowski ◽  
Lakshmi Akileswaran ◽  
Norman J. Beauchamp ◽  
Lien-Chieh Ding ◽  
...  

AbstractThe human ocular surface hosts a paucibacterial resident microbiome and virome. The factors contributing to homeostasis of this mucosal community are presently unknown. To determine the impact of ocular enucleation and prosthesis placement on the ocular surface microbiome, we sampled conjunctival swabs from 20 anophthalmic and 20 fellow-eye intact conjunctiva. DNA was extracted and subjected to quantitative 16S rDNA PCR, biome representational karyotyping (BRiSK), and quantitative PCR (qPCR) confirmation of specific organisms. 16S ribosomal qPCR revealed equivalent bacterial loads between conditions. Biome representational in silico karyotyping (BRiSK) demonstrated comparable bacterial fauna between anophthalmic and intact conjunctiva. Both torque teno virus and Merkel cell polyoma virus (MCPyV) were detected frequently in healthy and anophthalmic conjunctiva. By qPCR, MCPyV was detected in 19/20 anophthalmic samples compared with 5/20 fellow eyes. MCPyV copy number averaged 891 copies/ng in anophthalmic conjunctiva compared with 193 copies/ng in fellow eyes (p < 0.001). These results suggest that enucleation and prosthesis placement affect the ocular surface flora, particularly for the resident virome. As MCPyV has been shown to be the etiologic cause of Merkel cell carcinoma, understanding the mechanisms by which the ocular surface regulates this virus may have clinical importance.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Xin Mao ◽  
Tracy Chaplin ◽  
Bryan D. Young

Sézary syndrome (SS) is a rare variant of primary cutaneous T-cell lymphoma. Little is known about the underlying pathogenesis of S. To address this issue, we used Affymetrix 10K SNP microarray to analyse 13 DNA samples isolated from 8 SS patients and qPCR with ABI TaqMan SNP genotyping assays for the validation of the SNP microarray results. In addition, we tested the impact of SNP loss of heterozygosity (LOH) identified in SS cases on the gene expression profiles of SS cases detected with Affymetrix GeneChip U133A. The results showed: (1) frequent SNP copy number change and LOH involving 1, 2p, 3, 4q, 5q, 6, 7p, 8, 9, 10, 11, 12q, 13, 14, 16q, 17, and 20, (2) reduced SNP copy number at FAT gene (4q35) in 75% of SS cases, and (3) the separation of all SS cases from normal control samples by SNP LOH gene clusters at chromosome regions of 9q31q34, 10p11q26, and 13q11q12. These findings provide some intriguing information for our current understanding of the molecular pathogenesis of this tumour and suggest the possibility of presence of functional SNP LOH in SS tumour cells.


2012 ◽  
Vol 18 (2) ◽  
pp. 60-62
Author(s):  
MC Gonsales ◽  
P Preto ◽  
MA Montenegro ◽  
MM Guerreiro ◽  
I Lopes-Cendes

OBJECTIVES: The purpose of this study was to advance the knowledge on the clinical use of SCN1A testing for severe epilepsies within the spectrum of generalized epilepsy with febrile seizures plus by performing genetic screening in patients with Dravet and Doose syndromes and establishing genotype-phenotype correlations. METHODS: Mutation screening in SCN1A was performed in 15 patients with Dravet syndrome and 13 with Doose syndrome. Eight prediction algorithms were used to analyze the impact of the mutations in putative protein function. Furthermore, all SCN1A mutations previously published were compiled and analyzed. In addition, Multiplex Ligation-Dependent Probe Amplification (MLPA) technique was used to detect possible copy number variations within SCN1A. RESULTS: Twelve mutations were identified in patients with Dravet syndrome, while patients with Doose syndrome showed no mutations. Our results show that the most common type of mutation found is missense, and that they are mostly located in the pore region and the N- and C-terminal of the protein. No copy number variants in SCN1A were identified in our cohort. CONCLUSIONS: SCN1A testing is clinically useful for patients with Dravet syndrome, but not for those with Doose syndrome, since both syndromes do not seem to share the same genetic basis. Our results indicate that indeed missense mutations can cause severe phenotypes depending on its location and the type of amino-acid substitution. Moreover, our strategy for predicting deleterious effect of mutations using multiple computation algorithms was efficient for most of the mutations identified.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 33-34
Author(s):  
Yang Liang ◽  
Fang Hu ◽  
Yu-Jun Dai ◽  
Yun Wang ◽  
Huan Li

Background: Myelodysplastic syndrome (MDS) was characterized as ineffective hematopoiesis, increased transformation to acute myeloid leukemia (AML), and accompanied by immune system dysfunction. However, the immune signature of MDS remains elusive. Methods: The clinical data (age, sex, international prognostic score system (IPSS), hemoglobin, blast, RBC transfusion dependence, and corresponding subject-level survival) as well as expression profiles of MDS (CD34+ cells) were obtained from Gene Expression Omnibus (GEO: GSE 58831; GSE 114922). A robust prognosis model of immune genes was constructed by the least absolute shrinkage and selection operator (LASSO) regression analysis. Survival analysis for prognostic model was carried out through the Kaplan-Meier curve and Log-rank test. The receiver operating characteristic (ROC) curves and area under the curve (AUC) were used to assess the accuracy of prognostic models. Immune score for different subtype were calculated further by single sample gene set enrichment analysis (ssGSEA). Result: A novel robust immune gene prognostic model indicate that subtype with lower risk score were longer overall survival (OS) than subtype with higher risk score in training cohort (Figure1 A, C). The model was further verified by the validation cohort (Figure1 B, D). The multivariate Cox regression analysis demonstrated the model was an independent prognostic factor for OS prediction with hazard ratios of 56.694 (95% CIs: 9.038−355.648), 3.009 (95% CIs: 1.042−8.692) both in train cohort and external validation cohort respectively (Figure1 G, H). The AUC of 5- year were 0.92 (95% CIs: 0.86 - 0.97) and 0.7 (95% CIs: 0.51 - 0.89) for OS respectively in training cohort and validation cohort (Figure1 E, F). Furthermore, ssGSEA showed higher risk score subtype was significantly associated with higher immune score of check point, human leukocyte antigen (HLA), T cell co-inhibition and type I interferon (IFN) response (Figure1 K-N), which indicating that the poor outcome might be caused by tumor-associated immune response dysfunction partly. Conclusion: We constructed a robust immune gene prognostic model, which have a potential prognostic value for MDS patients and may provide evidence for personalized immunotherapy. Figure Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 22 (17) ◽  
pp. 9460
Author(s):  
Helmut Segner ◽  
Christyn Bailey ◽  
Carolina Tafalla ◽  
Jun Bo

The impact of anthropogenic contaminants on the immune system of fishes is an issue of growing concern. An important xenobiotic receptor that mediates effects of chemicals, such as halogenated aromatic hydrocarbons (HAHs) and polyaromatic hydrocarbons (PAHs), is the aryl hydrocarbon receptor (AhR). Fish toxicological research has focused on the role of this receptor in xenobiotic biotransformation as well as in causing developmental, cardiac, and reproductive toxicity. However, biomedical research has unraveled an important physiological role of the AhR in the immune system, what suggests that this receptor could be involved in immunotoxic effects of environmental contaminants. The aims of the present review are to critically discuss the available knowledge on (i) the expression and possible function of the AhR in the immune systems of teleost fishes; and (ii) the impact of AhR-activating xenobiotics on the immune systems of fish at the levels of immune gene expression, immune cell proliferation and immune cell function, immune pathology, and resistance to infectious disease. The existing information indicates that the AhR is expressed in the fish immune system, but currently, we have little understanding of its physiological role. Exposure to AhR-activating contaminants results in the modulation of numerous immune structural and functional parameters of fish. Despite the diversity of fish species studied and the experimental conditions investigated, the published findings rather uniformly point to immunosuppressive actions of xenobiotic AhR ligands in fish. These effects are often associated with increased disease susceptibility. The fact that fish populations from HAH- and PAH-contaminated environments suffer immune disturbances and elevated disease susceptibility highlights that the immunotoxic effects of AhR-activating xenobiotics bear environmental relevance.


Sign in / Sign up

Export Citation Format

Share Document