Radiosensitization by erlotinib and veliparib in esophageal squamous cell cancer.

2014 ◽  
Vol 32 (3_suppl) ◽  
pp. 70-70 ◽  
Author(s):  
Alexander Whitley ◽  
Tiffiny Cooper ◽  
Anusha Angajala ◽  
Hoa Trummell ◽  
Josh Jackson ◽  
...  

70 Background: Dysregulation of the HER/EGFR family is identified in esophageal cancers and confers resistance and inferior survival rates. In addition to their unique selectivity in killing DNA repair-deficient tumors, poly-ADP ribose polymerase inhibitors (PARPi) can enhance radiation-induced cytotoxicity. We and others have also previously demonstrated attenuation of DNA repair capacity in HER-inhibited cells to induce a contextual synthetic lethal interaction with PARPi. We thus hypothesized that erlotinib, a tyrosine kinase inhibitor directed against HER1/HER2, could induce a transient DNA repair deficit and subsequently increase DNA damage with the PARPi veliparib in esophageal cancer cells while increasing tumor radiation (RT) sensitivity. Methods: Esophageal SCC cell lines (KYSE-30, KYSE-410, and OE-21) were treated with combinations of vehicle, erlotinib, veliparib (a PARP1/2 inhibitor), and RT. DNA damage and repair and signaling proteins were assessed by immunofluorescence staining of cells for DNA damage and repair foci and/or western blot analysis. Cell viability and cytotoxicity were determined via cell proliferation assays and colony formation assays, respectively. Tumor growth delay was assessed in mice bearing esophageal tumor xenografts. Results: Consistent with our hypotheses, erlotinib increased γ-H2AX foci, a marker of DNA double strand breaks (DSBs), in all three esophageal SCC tumor cells. This coincided with reduced DSB-repair capacity as assessed via RAD51 foci and pDNA-PK. Triple combination with erlotinib, veliparib, and RT demonstrated enhanced cytotoxicity. A subsequent increase in Annexin positive cells was observed, indicative of activation of the apoptotic response. Importantly, the triple combination was most effective in suppressing the growth of esophageal tumor xenografts in vivo (2– to 5.5–fold lower tumor volume) relative to other treatment groups. Furthermore, we observed reductions in tumor volume from baseline with this triple combination in 3/6 mice. Conclusions: Thus, the combination of erlotinib, PARPi, and RT can be an innovative and effective treatment strategy to enhance the therapeutic ratio and improve outcomes in esophageal SCC cancer patients.

2009 ◽  
Vol 64 (7-8) ◽  
pp. 601-610 ◽  
Author(s):  
Pawel Rusin ◽  
Anna Walczak ◽  
Anita Zwierzchlejska ◽  
Jurek Olszewski ◽  
Alina Morawiec-Bajda ◽  
...  

DNA repair is critical for successful chemo- and radiotherapy of human tumours, because their genotoxic sensitivity may vary in different types of cancer cells. In this study we have compared DNA damage and the efficiency of its repair after genotoxic treatment with hydrogen peroxide, cisplatin and γ-radiation of head and neck squamous cell carcinoma (HNSCC). Lymphocytes and tissue cells from biopsies of 37 cancer patients and 35 healthy donors as well as the HTB-43 larynx cancer cell line were employed. The cell sensitivity to genotoxic treatment was estimated by the MTT survival assay. The extent of DNA damage and efficiency of its repair was examined by the alkaline comet assay. Among the examined treatments, we found that HNSCC cells were the most sensitive to γ-radiation and displayed impaired DNA repair. In particular, DNA damage was repaired less effectively in cells from HNSCC metastasis than healthy controls. In conclusion, our results suggest that the different genotoxic sensitivity of HNSCC cells may depend on their DNA repair capacity what in turn may be connected with the effectiveness of head and neck cancer therapy.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 479
Author(s):  
Pavel Vodicka ◽  
Ladislav Andera ◽  
Alena Opattova ◽  
Ludmila Vodickova

The disruption of genomic integrity due to the accumulation of various kinds of DNA damage, deficient DNA repair capacity, and telomere shortening constitute the hallmarks of malignant diseases. DNA damage response (DDR) is a signaling network to process DNA damage with importance for both cancer development and chemotherapy outcome. DDR represents the complex events that detect DNA lesions and activate signaling networks (cell cycle checkpoint induction, DNA repair, and induction of cell death). TP53, the guardian of the genome, governs the cell response, resulting in cell cycle arrest, DNA damage repair, apoptosis, and senescence. The mutational status of TP53 has an impact on DDR, and somatic mutations in this gene represent one of the critical events in human carcinogenesis. Telomere dysfunction in cells that lack p53-mediated surveillance of genomic integrity along with the involvement of DNA repair in telomeric DNA regions leads to genomic instability. While the role of individual players (DDR, telomere homeostasis, and TP53) in human cancers has attracted attention for some time, there is insufficient understanding of the interactions between these pathways. Since solid cancer is a complex and multifactorial disease with considerable inter- and intra-tumor heterogeneity, we mainly dedicated this review to the interactions of DNA repair, telomere homeostasis, and TP53 mutational status, in relation to (a) cancer risk, (b) cancer progression, and (c) cancer therapy.


2020 ◽  
Vol 35 (3) ◽  
pp. 529-544 ◽  
Author(s):  
F Horta ◽  
S Catt ◽  
P Ramachandran ◽  
B Vollenhoven ◽  
P Temple-Smith

Abstract STUDY QUESTION Does female ageing have a negative effect on the DNA repair capacity of oocytes fertilised by spermatozoa with controlled levels of DNA damage? SUMMARY ANSWER Compared to oocytes from younger females, oocytes from older females have a reduced capacity to repair damaged DNA introduced by spermatozoa. WHAT IS KNOWN ALREADY The reproductive lifespan in women declines with age predominantly due to poor oocyte quality. This leads to decreased reproductive outcomes for older women undergoing assisted reproductive technology (ART) treatments, compared to young women. Ageing and oocyte quality have been clearly associated with aneuploidy, but the range of factors that influence this change in oocyte quality with age remains unclear. The DNA repair activity prior to embryonic genomic activation is considered to be of maternal origin, with maternal transcripts and proteins controlling DNA integrity. With increasing maternal age, the number of mRNAs stored in oocytes decreases. This could result in diminished efficiency of DNA repair and/or negative effects on embryo development, especially in the presence of DNA damage. STUDY DESIGN, SIZE, DURATION Oocytes from two age groups of 30 super-ovulated female mice (young: 5–8 weeks old, n = 15; old: 42–45 weeks old, n = 15) were inseminated with sperm from five males with three different controlled DNA damage levels; control: ≤10%, 1 Gray (Gy): 11–30%, and 30 Gy: >30%. Inseminated oocytes (young: 125, old: 78) were assessed for the formation of zygotes (per oocyte) and blastocysts (per zygote). Five replicates of five germinal vesicles (GVs) and five MII oocytes from each age group were analysed for gene expression. The DNA damage response (DDR) was assessed in a minimum of three IVF replicates in control and 1 Gy zygotes and two-cell embryos using γH2AX labelling. PARTICIPANTS/MATERIALS, SETTING, METHODS Swim-up sperm samples from the cauda epididymidis of C57BL6 mice were divided into control (no irradiation) and 1- and 30-Gy groups. Treated spermatozoa were irradiated at 1 and 30 Gy, respectively, using a linear accelerator Varian 21iX. Following irradiation, samples were used for DNA damage assessment (Halomax) and for insemination. Presumed zygotes were cultured in a time-lapse incubator (MIRI, ESCO). Gene expression of 91 DNA repair genes was assessed using the Fluidigm Biomark HD system. The DNA damage response in zygotes (6–8 h post-fertilisation) and two-cell embryos (22–24 h post-fertilisation) was assessed by immunocytochemical analysis of γH2AX using confocal microscopy (Olympus FV1200) and 3D volumetric analysis using IMARIS software. MAIN RESULTS AND THE ROLE OF CHANCE The average sperm DNA damage for the three groups was statistically different (control: 6.1%, 1 Gy: 16.1%, 30 Gy: 53.1%, P < 0.0001), but there were no significant differences in fertilisation rates after IVF within or between the two age groups [(young; control: 86.79%, 1 Gy: 82.75%, 30 Gy: 76.74%) (old; control: 93.1%, 1 Gy: 70.37%, 30 Gy: 68.18%) Fisher’s exact]. However, blastocyst rates were significantly different (P < 0.0001) among the groups [(young; control: 86.95%, 1 Gy: 33.33%, 30 Gy: 0.0%) (old; control: 70.37%, 1 Gy: 0.0%, 30 Gy: 0.0%)]. Between the age groups, 1-Gy samples showed a significant decrease in the blastocyst rate in old females compared to young females (P = 0.0166). Gene expression analysis revealed a decrease in relative expression of 21 DNA repair genes in old GV oocytes compared to young GV oocytes (P < 0.05), and similarly, old MII oocytes showed 23 genes with reduced expression compared to young MII oocytes (P < 0.05). The number of genes with decreased expression in older GV and MII oocytes significantly affected pathways such as double strand break (GV: 5; MII: 6), nucleotide excision repair (GV: 8; MII: 5) and DNA damage response (GV: 4; MII: 8). There was a decreased DDR in zygotes and in two-cell embryos from old females compared to young regardless of sperm treatment (P < 0.05). The decrease in DNA repair gene expression of oocytes and decreased DDR in embryos derived from older females suggests that ageing results in a diminished DNA repair capacity. LARGE-SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION Ionising radiation was used only for experimental purposes, aiming at controlled levels of sperm DNA damage; however, it can also damage spermatozoa proteins. The female age groups selected in mice were intended to model effects in young and old women, but clinical studies are required to demonstrate a similar effect. WIDER IMPLICATIONS OF THE FINDINGS Fertilisation can occur with sperm populations with medium and high DNA damage, but subsequent embryo growth is affected to a greater extent with aging females, supporting the theory that oocyte DNA repair capacity decreases with age. Assessment of the oocyte DNA repair capacity may be a useful diagnostic tool for infertile couples. STUDY FUNDING/COMPETING INTEREST(S) Funded by the Education Program in Reproduction and Development, Department of Obstetrics and Gynaecology, Monash University. None of the authors has any conflict of interest to report.


2006 ◽  
Vol 167 (2) ◽  
pp. 131-141 ◽  
Author(s):  
Maria Enrica Fracasso ◽  
Denise Doria ◽  
Paola Franceschetti ◽  
Luigi Perbellini ◽  
Luciano Romeo

2007 ◽  
Vol 48 (9) ◽  
pp. 722-727 ◽  
Author(s):  
Konstantina Kontogianni ◽  
Niki Messini-Nikolaki ◽  
Konstantinos Christou ◽  
Konstantinos Gourgoulianis ◽  
Smaragdi Tsilimigaki ◽  
...  

1995 ◽  
Vol 41 (12) ◽  
pp. 1848-1853 ◽  
Author(s):  
S A Kyrtopoulos

Abstract DNA repair is an important mechanism of cellular protection from the effects of genotoxic chemicals. Although extensive evidence from studies in experimental systems indicates that variation in DNA repair can significantly influence susceptibility to genotoxins, corresponding studies in human populations are so far limited, mainly because of methodological difficulties. One system, using observations of the accumulation and repair of DNA damage in cancer patients treated with alkylating cytostatic drugs, has provided useful information for assessing the effects of interindividual variation in DNA repair activity on the induction of genotoxic effects in humans. The most detailed studies of this kind have been carried out on patients with cancer (i.e., Hodgkin disease, malignant melanoma) treated with the methylating cytostatic drugs procarbazine or dacarbazine; these studies have provided detailed information on dose-response relationships. They have also demonstrated the protective role of the repair enzyme O6-alkylguanine-DNA alkyltransferase against the accumulation of the premutagenic methylated DNA lesion O6-methylguanine in patients' DNA. Given the strong evidence that exposure of the general population to environmental methylating agents may be extensive, as indicated by the frequent discovery of methylated DNA adducts in human DNA, data on DNA damage and repair in alkylating drug-treated patients and their modulation by host factors may prove useful in efforts to assess the possible carcinogenic risks posed by exposure to environmental methylating agents.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadezda V. Volkova ◽  
Bettina Meier ◽  
Víctor González-Huici ◽  
Simone Bertolini ◽  
Santiago Gonzalez ◽  
...  

AbstractCells possess an armamentarium of DNA repair pathways to counter DNA damage and prevent mutation. Here we use C. elegans whole genome sequencing to systematically quantify the contributions of these factors to mutational signatures. We analyse 2,717 genomes from wild-type and 53 DNA repair defective backgrounds, exposed to 11 genotoxins, including UV-B and ionizing radiation, alkylating compounds, aristolochic acid, aflatoxin B1, and cisplatin. Combined genotoxic exposure and DNA repair deficiency alters mutation rates or signatures in 41% of experiments, revealing how different DNA alterations induced by the same genotoxin are mended by separate repair pathways. Error-prone translesion synthesis causes the majority of genotoxin-induced base substitutions, but averts larger deletions. Nucleotide excision repair prevents up to 99% of point mutations, almost uniformly across the mutation spectrum. Our data show that mutational signatures are joint products of DNA damage and repair and suggest that multiple factors underlie signatures observed in cancer genomes.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1680
Author(s):  
Tassanee Lerksuthirat ◽  
Rakkreat Wikiniyadhanee ◽  
Sermsiri Chitphuk ◽  
Wasana Stitchantrakul ◽  
Somponnat Sampattavanich ◽  
...  

Recent developments in chemotherapy focus on target-specific mechanisms, which occur only in cancer cells and minimize the effects on normal cells. DNA damage and repair pathways are a promising target in the treatment of cancer. In order to identify novel compounds targeting DNA repair pathways, two key proteins, 53BP1 and RAD54L, were tagged with fluorescent proteins as indicators for two major double strand break (DSB) repair pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). The engineered biosensor cells exhibited the same DNA repair properties as the wild type. The biosensor cells were further used to investigate the DNA repair activities of natural biological compounds. An extract from Phyllosticta sp., the endophyte isolated from the medicinal plant Garcinia cowa Roxb. ex Choisy, was tested. The results showed that the crude extract induced DSB, as demonstrated by the increase in the DNA DSB marker γH2AX. The damaged DNA appeared to be repaired through NHEJ, as the 53BP1 focus formation in the treated fraction was higher than in the control group. In conclusion, DNA repair-based biosensors are useful for the preliminary screening of crude extracts and biological compounds for the identification of potential targeted therapeutic drugs.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 606-606
Author(s):  
Ji Hye Park ◽  
Robert S Welner ◽  
Daniel G. Tenen ◽  
Catherine T. Yan

Abstract Blood cells of all lineages are generated from small pools of long-term hematopoietic stem cells (LT-HSCs) that continually replenish throughout life. LT-HSCs regulate the balanced turnover of all mature blood lineages by switching between self-renewal, differentiation and quiescence, thereby maintaining hematopoietic homeostasis in steady state and in response to injury. In any given cell, some DNA damage may remain despite the action of DNA repair processes, including in LT-HSCs. Over time, HSCs lose their long-term capability to self-renew due to misrepair of DNA breaks and increased accumulation of DNA damage, resulting in loss of regenerative plasticity and immune fitness. The accrual of DNA damage is the principal factor that contributes to functional decline in HSC renewal and in the immune system during ageing. In recent studies, the capacity of aging HSCs to self-renew is shown to be dependent on DNA repair pathways, with non-homologous end-joining (NHEJ) as the principle pathway implicated in DNA repair in quiescent HSCs from ex-vivo cell-based assays. Although NHEJ in particular has been implicated in this process in LT-HSCs, there has so far been very little evidence of this activity in vivo. DNA Ligase IV (Lig4), which catalyzes the end-ligation of broken DNA ends mediated by NHEJ, has no known functions outside of NHEJ. Because a deficiency in Lig4 in mice is embryonic lethal, here we assessed the role of Lig4 in HSC homeostasis by assaying HSC functions in a knockin mouse model of a hypomorphic homozygous R278H mutation in Lig4 that had been identified in the first DNA Lig4 Syndrome patient. The R278H mutation significantly impairs the end-ligation function of the Lig4 protein, and mice homozygous for the R278H mutation (Lig4R/R) showed diminished DSB repair capacity and age-dependent lymphopenia that implicated potential HSC defects. Consistent with a defect in NHEJ, we show the Lig4 R278H mutation severely limited HSC self-renewal. Lig4R/R HSC reconstitutions were skewed towards the myeloid lineage and resulted in severely reduced chimerism, confirming the capacity of HSCs to self-renew requires functional DNA repair. Next, we examined if there is increased DNA damage with/without ionizing irradiation (IR). Lig4R/R LT-HSCs showed an increase in reactive oxygen species (ROS), abnormal cycling and increased apoptosis from accumulated DNA damage in steady state and slow DNA double strand breaks (DSBs) repair kinetics in response to low dose IR because of improper Lig4 function. This led us to check the LT-HSC pool more carefully. It has been shown that the HSC pool is intact and phenotypically increased with age. Strikingly, we found that the HSCs in both young and old Lig4R/R mice are markedly reduced to 20% of wild-type levels. The severe LT-HSC reduction and lethality of disease in Lig4R/Rmice was completely rescued by transplantation with wild type bone marrow. These evidences support the notion of a critical role for Lig4 in maintenance of the LT-HSC pool. In a recent study, it was reported that the steady state pool of murine adult LT-HSCs can be further distinguished into quiescent (~20%) and variably cycling (~80%) populations. Since LT-HSCs in young Lig4R/R mice are maintained in steady state at 20% of WT HSCs, we hypothesized that the reduced pool of LT-HSCs in the Lig4R/R mice is caused by the loss of cycling LT-HSCs that continually replenish blood lineages during aging. To compare these populations, microarray analysis was done on the pool of WT and Lig4R/R LT-HSCs, versus sorted populations of quiescent and variably cycling LT-HSCs. Microarray analysis clearly showed that the Lig4R/RLT-HSCs correlated with the quiescent LT-HSCs, indicating NHEJ regulates the homeostasis of the faster cycling LT-HSC pool. Our study suggest that the slowest cycling LT-HSCs serve to replenish the overall LT-HSC pool and HSC homeostasis is maintained by capacity of faster cycling LT-HSC pool to revert to quiescence in response to stress/injury. Additionally, defective NHEJ depletes the faster cycling LT-HSC pool and underlies early HSC exhaustion in Lig4R/R mice. Our findings demonstrate for the first time a physiological role for Lig4 in the maintenance of HSC homeostasis. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document