Microbiome signature, global methylation and immune landscape in early onset colorectal cancer.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3519-3519
Author(s):  
Ning Jin ◽  
Xiaokui Mo ◽  
Rebecca Hoyd ◽  
Ayse Selen Yilmaz ◽  
YunZhou Liu ◽  
...  

3519 Background: The incidence of colorectal cancer (CRC) in young adults ( < 50 years old) has been rapidly increasing by 2% per year since early 1990. Approximately 20% of early-onset (EO) CRC cases are due to germline gene mutations. However, the etiology of sporadic EO CRC remains poorly understood. Research suggests that environmental factors such as the Western diet (high in fat and low in fiber) may be associated with an increased incidence of sporadic EO CRC. The gut microbiota decompose and ferment dietary fibers to produce microbial metabolites, which play pivotal roles in maintaining the integrity of intestinal epithelium as well as the immune cell homeostasis. Also, these microbial metabolites may influence the host epigenome by altering either the activity of epigenetic enzymes or by modifying the availability of cofactors needed for epigenetic modifications. The aim of our research is to associate intratumoral microbiota with methylation pattern and immune cell composition in EO CRC. Methods: A total of 358 CRC cases, including 54 cases of EO CRC (age < 50 years) and 304 cases of late onset (LO) CRC (age ≥ 50 years), with matched methylation array (Infinium HM450), RNA-sequencing (Illumina HiSeq) from colon adenocarcinomas (COAD) and rectal adenocarcinomas (READ), and clinicopathological information of each patient, were extracted from the Cancer Genome Atlas (TCGA). We characterized and compared the intra-tumoral microbiota composition, tumor-infiltrating lymphocytes (TILs), and methylation profile between EO and LO CRC. Results: We found that there is a distinct microbial distribution, gene expression and methylation pattern in the EO CRC when compared with LO CRC. Non-human sequences from several kingdoms including bacteria, fungi and viruses were found and the incidences were consistent with reported values by other methods, e.g. Fusobacterium incidence. The EO CRC cases showed global hypomethylation, even though hypermethylation pattern is expected in the young chronological age group (known as Horvath’s clock). Pathway overrepresentation analysis of differentially expressed genes showed significant activation of p53 and pentose phosphate pathways and de novo nucleotide synthesis in EO CRC. Integration across datasets showed positive correlations between microbes and inflammasome pathway, positive correlation with regulatory T cells (Tregs), and negative correlations with CD4 memory T cells. Conclusions: These data suggest a mechanism by which the colorectal cancer-associated microbiota may be associated with epigenetic regulation and host immune response.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12578
Author(s):  
Junsheng Deng ◽  
Xiaoli Chen ◽  
Ting Zhan ◽  
Mengge Chen ◽  
Xisheng Yan ◽  
...  

Background αB-Crystallin (CRYAB) is differentially expressed in various tumors. However, the correlation between CRYAB and immune cell infiltration in colorectal cancer (CRC) remains unclear. Materials & Methods Kaplan–Meier survival curves in The Cancer Genome Atlas (TCGA) were used to evaluate the relationship between CRYAB expression and both overall survival and progression-free survival. The relationships between CRYAB expression and infiltrating immune cells and their corresponding gene marker sets were examined using the TIMER database. Results The expression of CRYAB was lower in CRC tumor tissues than in normal tissues (P < 0.05). High CRYAB gene expression and high levels of CRYAB gene methylation were correlated with high-grade malignant tumors and more advanced tumor, nodes and metastasis (TNM) cancer stages. In addition, in colorectal cancer, there was a positive correlation between CRYAB expression and immune infiltrating cells including neutrophils, macrophages, CD8 + T cells, and CD4 + T cells, as well as immune-related genes including CD2, CD3D, and CD3E. Methylation sites such as cg13084335, cg15545878, cg13210534, and cg15318568 were positively correlated with low expression of CRYAB. Conclusion Because CRYAB likely plays an important role in immune cell infiltration, it may be a potential tumor-suppressor gene in CRC and a potential novel therapeutic target and predictive biomarker for colorectal cancer (CRC).


2021 ◽  
Vol 12 ◽  
Author(s):  
Junhong Shi ◽  
Meiyu Bao ◽  
Weifeng Wang ◽  
Xuan Wu ◽  
Yueying Li ◽  
...  

Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 3 (PLOD3) is related to a variety of human diseases. However, its function in Colorectal cancer (CRC) remains uncertain. PLOD3 expression was analyzed using The Cancer Genome Atlas (TCGA) pan-cancer data. DAVID was used for enrichment analysis of PLOD3-related genes. The correlation between PLOD3 expression and immune cell infiltration was evaluated. Four expression profile datasets (GSE17536, GSE39582, GSE74602, and GSE113513) from Gene Expression Omnibus, and two proteomic datasets were used as validation cohorts for assessing the diagnostic and prognostic value of PLOD3 in CRC. What’s more, we performed immunohistochemistry (IHC) staining for PLOD3 in 160 paired CRC specimens and corresponding adjacent non-tumor tissues. PLOD3 was highly expressed in many tumors including CRC. PLOD3 was upregulated in advanced stage CRCs, and high PLOD3 expression was associated with poor survival. High PLOD3 expression was associated with low levels of B cells, CD4+ T cells, M1 macrophages, CD8+ T cells, and multiple immunerelated characteristics. In addition, the high PLOD3 expression group had a higher TIDE score and a lower tumor mutation burden and microsatellite instability, indicating that patients with high PLOD3 expression may be resistant to immunotherapy. Additional datasets and IHC analysis were used to validate the diagnostic and prognostic value of PLOD3 at the mRNA and protein levels in CRC. Patients with non-response to immunotherapy showed increased PLOD3 expression in an immunotherapy treated dataset. PLOD3 is a potential biomarker for CRC diagnosis and prognosis prediction. CRCs with high PLOD3 expression may be resistant to immune checkpoint therapy.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 334
Author(s):  
Salman M. Toor ◽  
Varun Sasidharan Nair ◽  
Reem Saleh ◽  
Rowaida Z. Taha ◽  
Khaled Murshed ◽  
...  

Colorectal cancer (CRC) is influenced by infiltration of immune cell populations in the tumor microenvironment. While elevated levels of cytotoxic T cells are associated with improved prognosis, limited studies have reported associations between CD4+ T cells and disease outcomes. We recently performed transcriptomic profiling and comparative analyses of sorted CD4+ and CD8+ tumor-infiltrating lymphocytes (TILs) from bulk tumors of CRC patients with varying disease stages. In this study, we compared the transcriptomes of CD4+ with CD8+ TILs. Functional annotation pathway analyses revealed the downregulation of inflammatory response-related genes, while T cell activation and angiogenesis-related genes were upregulated in CD4+ TILs. The top 200 deregulated genes in CD4+ TILs were aligned with the cancer genome atlas (TCGA) CRC dataset to identify a unique gene signature associated with poor prognosis. Moreover, 69 upregulated and 20 downregulated genes showed similar trends of up/downregulation in the TCGA dataset and were used to calculate “poor prognosis score” (ppScore), which was significantly associated with disease-specific survival. High ppScore patients showed lower expression of Treg-, Th1-, and Th17-related genes, and higher expression of Th2-related genes. Our data highlight the significance of T cells within the TME and identify a unique candidate prognostic gene signature for CD4+ TILs in CRC patients.


Author(s):  
Jeong Eun Kim ◽  
Jaeyong Choi ◽  
Chang-Ohk Sung ◽  
Yong Sang Hong ◽  
Sun Young Kim ◽  
...  

AbstractThe global incidence of early-onset colorectal cancer (EO-CRC) is rapidly rising. However, the reason for this rise in incidence as well as the genomic characteristics of EO-CRC remain largely unknown. We performed whole-exome sequencing in 47 cases of EO-CRC and targeted deep sequencing in 833 cases of CRC. Mutational profiles of EO-CRC were compared with previously published large-scale studies. EO-CRC and The Cancer Genome Atlas (TCGA) data were further investigated according to copy number profiles and mutation timing. We classified colorectal cancer into three subgroups: the hypermutated group consisted of mutations in POLE and mismatch repair genes; the whole-genome doubling group had early functional loss of TP53 that led to whole-genome doubling and focal oncogene amplification; the genome-stable group had mutations in APC and KRAS, similar to conventional colon cancer. Among non-hypermutated samples, whole-genome doubling was more prevalent in early-onset than in late-onset disease (54% vs 38%, Fisher’s exact P = 0.04). More than half of non-hypermutated EO-CRC cases involved early TP53 mutation and whole-genome doubling, which led to notable differences in mutation frequencies between age groups. Alternative carcinogenesis involving genomic instability via loss of TP53 may be related to the rise in EO-CRC.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A670-A670
Author(s):  
Jonathan Chen ◽  
Karin Pelka ◽  
Matan Hofree ◽  
Marios Giannakis ◽  
Genevieve Boland ◽  
...  

BackgroundImmune responses to cancer are highly variable, with DNA mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. Almost all tumors are infiltrated with immune cells, but the types of immune responses and their effects on tumor growth, metastasis and death, vary greatly between different cancers and individual tumors. Which of the numerous cell subsets in a tumor contribute to the response, how their interactions are regulated, and how they are spatially organized within tumors remains poorly understood.MethodsTo understand the rules governing these varied responses, we transcriptionally profiled 371,223 single cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd treatment-naive patients. We developed a systematic approach to discover cell types, their underlying gene programs, and cellular communities based on single cell RNA-seq (scRNAseq) profiles and applied it to study the distinguishing features of human MMRd and MMRp colorectal cancer. Cellular communities discovered from this analysis were spatially mapped in tissue sections using multiplex RNA in situ hybridization microscopy.ResultsTo understand the basis for differential immune responses in CRC, we first determined and compared the immune cell composition of MMRd and MMRp CRC and normal colon tissue, finding dramatic remodeling between tumor and normal tissue and between MMRd and MMRp tumors, particularly within the myeloid, T cell, and stromal compartments. Among the clusters enriched in MMRd tumors were activated CXCL13+ CD8 T cells. Importantly, gene program co-variation analysis revealed multicellular networks. We discovered a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage, and an MMRd-enriched immune hub within the tumor, with activated IFNG+ and CXCL13+ T cells together with malignant and myeloid cells expressing T-cell-attracting chemokines (figure 1).ConclusionsOur study provides a rich dataset of cellular states, gene programs and their transformations in tumors across a relatively large cohort of patients with colorectal cancer. Our predictions of several multicellular hubs based on co-variation of gene expression programs, and subsequent spatial localization of two major immune-malignant hubs, organizes a large set of cell states and programs into a smaller number of coordinated networks of cells and processes. Understanding the molecular mechanisms underlying these hubs, and studying their temporal and spatial regulation upon treatment will be critical for advancing cancer therapy.Ethics ApprovalThis study was approved by the DF-HCC institutional review board (protocols 03-189 and 02-240).Abstract 641 Figure 1A coordinated network of CXCL13+ T cells with myeloid and malignant cells expressing ISGs. Image shows a portion of formalin-fixed paraffin-embedded tissue from an MMRd CRC specimen stained with multiplex RNA ISH / IF for PanCK-IF, CD3E-ISH, CXCL10/CXCL11-ISH, CXCL13-ISH, and IFNG-ISH. Note IFNG+ and CXCL13+ cells in proximity to cells expressing the chemokines CXCL10/CXCL11


Gut ◽  
2019 ◽  
Vol 69 (4) ◽  
pp. 691-703 ◽  
Author(s):  
Natasja L de Vries ◽  
Vincent van Unen ◽  
Marieke E Ijsselsteijn ◽  
Tamim Abdelaal ◽  
Ruud van der Breggen ◽  
...  

ObjectiveA comprehensive understanding of anticancer immune responses is paramount for the optimal application and development of cancer immunotherapies. We unravelled local and systemic immune profiles in patients with colorectal cancer (CRC) by high-dimensional analysis to provide an unbiased characterisation of the immune contexture of CRC.DesignThirty-six immune cell markers were simultaneously assessed at the single-cell level by mass cytometry in 35 CRC tissues, 26 tumour-associated lymph nodes, 17 colorectal healthy mucosa and 19 peripheral blood samples from 31 patients with CRC. Additionally, functional, transcriptional and spatial analyses of tumour-infiltrating lymphocytes were performed by flow cytometry, single-cell RNA-sequencing and multispectral immunofluorescence.ResultsWe discovered that a previously unappreciated innate lymphocyte population (Lin–CD7+CD127–CD56+CD45RO+) was enriched in CRC tissues and displayed cytotoxic activity. This subset demonstrated a tissue-resident (CD103+CD69+) phenotype and was most abundant in immunogenic mismatch repair (MMR)-deficient CRCs. Their presence in tumours was correlated with the infiltration of tumour-resident cytotoxic, helper and γδ T cells with highly similar activated (HLA-DR+CD38+PD-1+) phenotypes. Remarkably, activated γδ T cells were almost exclusively found in MMR-deficient cancers. Non-activated counterparts of tumour-resident cytotoxic and γδ T cells were present in CRC and healthy mucosa tissues, but not in lymph nodes, with the exception of tumour-positive lymph nodes.ConclusionThis work provides a blueprint for the understanding of the heterogeneous and intricate immune landscape of CRC, including the identification of previously unappreciated immune cell subsets. The concomitant presence of tumour-resident innate and adaptive immune cell populations suggests a multitargeted exploitation of their antitumour properties in a therapeutic setting.


2016 ◽  
Vol 34 (4_suppl) ◽  
pp. 558-558 ◽  
Author(s):  
Michael Sangmin Lee ◽  
Benjamin Garrett Vincent ◽  
Autumn Jackson McRee ◽  
Hanna Kelly Sanoff

558 Background: Different immune cell infiltrates into colorectal cancer (CRC) tumors are associated with different prognoses. Tumor-associated macrophages contribute to immune evasion and accelerated tumor progression. Conversely, tumor infiltrating lymphocytes at the invasive margin of CRC liver metastases are associated with improved outcomes with chemotherapy. Cetuximab is an IgG1 monoclonal antibody against epidermal growth factor receptor (EGFR) and stimulates antibody-dependent cellular cytotoxicity (ADCC) in vitro. However, it is unclear in humans if response to cetuximab is modulated by the immune response. We hypothesized that different immune patterns detected in gene expression profiles of CRC metastases are associated with different responses to cetuximab. Methods: We retrieved gene expression data from biopsies of metastases from 80 refractory CRC patients treated with cetuximab monotherapy (GEO GSE5851). Samples were dichotomized by cetuximab response as having either disease control (DC) or progressive disease (PD). We performed gene set enrichment analysis (GSEA) with GenePattern 3.9.4 using gene sets of immunologic signatures obtained from the Molecular Signatures Database v5.0. Results: Among the 68 patients with response annotated, 25 had DC and 43 had PD. In the PD cohort, 59/1910 immunologic gene sets had false discovery rate (FDR) < 0.1. Notably, multiple gene sets upregulated in monocyte signatures were associated with PD. Also, gene sets consistent with PD1-ligated T cells compared to control activated T cells (FDR = 0.052) or IL4-treated CD4 T cells compared to controls (FDR = 0.087) were associated with PD. Conclusions: Cetuximab-resistant patients tended to have baseline increased expression of gene signatures reflective of monocytic infiltrates, consistent with also having increased expression of the IL4-treated T-cell signature. Cetuximab resistance was also associated with increased expression of the PD1-ligated T cell signature. These preliminary findings support further evaluation of the effect of differential immune infiltrates in prognosis of metastatic CRC treated with cetuximab.


2021 ◽  
Author(s):  
Wenhui Zhong ◽  
Feng Zhang ◽  
Xin Lu ◽  
Kaijun Huang ◽  
Junming Bi ◽  
...  

Abstract Background: Tumor-infiltrating immune cells (TIIC) are the major components of the tumor microenvironment (TME) and play vital roles in the tumorigenesis and progression of colorectal cancer (CRC). Increasing evidence has elucidated their significances in predicting prognosis and therapeutic efficacy. Nonetheless, the immune infiltrative landscape of CRC remains largely unknown. Methods: All the RNA-seq transcriptome data and full clinical annotation of 1213 colorectal cancer patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene-Expression Omnibus (GEO) database. The “CIBERSORT” and “estimate” R package were applied to calculate 22 infiltrated immune cell fractions and stromal and immune score. Three TIIC patterns were determined by Unsupervised clustering methods. Through using principal-component analysis, TIIC scores were established. Data for potential agents comes from the Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) and Cancer Therapeutics Response Portal database (CTRP). Results:In this study, we identified three distinct TIIC patterns characterized by distinct immunological features in 1213 CRC samples from multiple platforms. Base on the TIIC-related gene signatures from three clusters, we constructed a scoring system to quantify the immune infiltration level of individual samples in the CRC cohort and the clinical benefits of different groups. The high TIIC score group was marked by increased immune activation status and favorable prognosis. Conversely, low TIIC score group was featured with immune-desert phenotype and poor prognosis, along with the activation of transforming growth factor-β (TGF-β), WNT, ECM receptor interaction, and VEGF signaling pathways. Meanwhile, the high TIIC score group was also correlated with enhanced efficacy of immunotherapy. Additional, four chemotherapy drugs, seven CTRP-derived drug compounds and six PRISM-derived drug compounds were identified as potential drug for CRC among high and low TIIC subgroups.Conclusions: Collectively, as an effective prognostic biomarker and predictive indicator, the TIIC score plays an important role in the evaluation of CRC prognosis and the response of immunotherapy. Investigation of the TIIC patterns might provide us a promising target for improving immunotherapeutic efficacy in CRC.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shaokun Wang ◽  
Li Pang ◽  
Zuolong Liu ◽  
Xiangwei Meng

Abstract Background The change of immune cell infiltration essentially influences the process of colorectal cancer development. The infiltration of immune cells can be regulated by a variety of genes. Thus, modeling the immune microenvironment of colorectal cancer by analyzing the genes involved can be more conducive to the in-depth understanding of carcinogenesis and the progression thereof. Methods In this study, the number of stromal and immune cells in malignant tumor tissues were first estimated by using expression data (ESTIMATE) and cell-type identification with relative subsets of known RNA transcripts (CIBERSORT) to calculate the proportion of infiltrating immune cell and stromal components of colon cancer samples from the Cancer Genome Atlas database. Then the relationship between the TMN Classification and prognosis of malignant tumors was evaluated. Results By investigating differentially expressed genes using COX regression and protein-protein interaction network (PPI), the candidate hub gene serine protease inhibitor family E member 1 (SERPINE1) was found to be associated with immune cell infiltration. Gene Set Enrichment Analysis (GSEA) further projected the potential pathways with elevated SERPINE1 expression to carcinogenesis and immunity. CIBERSORT was subsequently utilized to investigate the relationship between the expression differences of SERPINE1 and immune cell infiltration and to identify eight immune cells associated with SERPINE1 expression. Conclusion We found that SERPINE1 plays a role in the remodeling of the colon cancer microenvironment and the infiltration of immune cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mengyu Sun ◽  
Tongyue Zhang ◽  
Yijun Wang ◽  
Wenjie Huang ◽  
Limin Xia

Colorectal cancer (CRC) has the characteristics of high morbidity and mortality. LncRNA not only participates in the progression of CRC through genes and transcription levels, but also regulates the tumor microenvironment and leads to the malignant phenotype of tumors. Therefore, we identified immune-related LncRNAs for the construction of clinical prognostic model. We searched The Cancer Genome Atlas (TCGA) database for original data. Then we identified differentially expressed irlncRNA (DEirlncRNA), which was paired and verified subsequently. Next, univariate analysis, Lasso and Cox regression analysis were performed on the DEirlncRNA pair. The ROC curve of the signature was drawn, and the optimal cut-off value was found. Then the cohort was divided into a high-risk and a low-risk group. Finally, we re-evaluated the signature from different perspectives. A total of 16 pairs of DEirlncRNA were included in the construction of the model. After regrouping according to the cut-off value of 1.275, the high-risk group showed adverse survival outcomes, progressive clinicopathological features, specific immune cell infiltration status, and high sensitivity to some chemotherapy drugs. In conclusion, we constructed a signature composed of immune-related LncRNA pair with no requirement of the specific expression level of genes, which shows promising clinical predictive value in CRC patients.


Sign in / Sign up

Export Citation Format

Share Document