Biology and Ecology of Pharmaceutical Sea Anemones, Stony Corals, Soft Corals and Gorgonians (Class: Anthozoa)

Author(s):  
Ramasamy Santhanam ◽  
Santhanam Ramesh ◽  
Gubbiyappa Shivakumar
2011 ◽  
Vol 80 (4) ◽  
pp. 251-268 ◽  
Author(s):  
Bert W. Hoeksema ◽  
Andrea L. Crowther

Phyllodiscus semoni is a morphologically variable sea anemone species from the Indo-Pacific with morphotypes ranging from upright and branched to low-lying and rounded. The apparent camouflage strategies of this sea anemone allow it to resemble other species or objects in its environment, such as stony corals, soft corals, seaweeds, or rocky boulders covered by algae, which may help it to avoid recognition by potential predators. Occasionally, it occurs in aggregations that may result from asexual reproduction. A high level of intraspecific morphological variation, including co-occurring aggregations of three different morphotypes, was observed in the Spermonde Archipelago off Makassar, South Sulawesi, Indonesia. The co-occurrence of aggregations with different morphotypes suggests that Phyllodiscus is a highly polymorphic monospecific genus. Sea anemones of this genus are not frequently encountered at other localities and the number of morphotypes seems large. Therefore, it is unlikely that we are dealing with more than one species that are all concentrated in a single area. Phyllodiscus sea anemones are considered dangerous to humans because their nematocysts contain highly toxic venoms that may inflict harmful stings. Therefore they are the subject of recent toxicological studies. The present paper aims to assist in the recognition of these highly variable hazardous animals and to discuss the appearance of their aggregations.


Zootaxa ◽  
2019 ◽  
Vol 4688 (2) ◽  
pp. 249-263
Author(s):  
DANIEL LAURETTA ◽  
MARIANO I. MARTINEZ

Corallimorpharians are a relative small group of anthozoan cnidarians, also known as jewel sea anemones. They resemble actiniarian sea anemones in lacking a skeleton and being solitary, but resemble scleractinian corals in external and internal morphology, and they are considered to be the sister group of the stony corals. Corynactis carnea (=Sphincteractis sanmatiensis) is a small, common and eye catching species that inhabits the shallow water of northern Patagonia and the Argentinean shelf up to 200 m depth. Corallimorphus rigidus is registered for the first time from the southwestern Atlantic Ocean. It is a rather big and rare species that inhabits only the deep sea. Only two specimens were found at 2934 m depth in Mar del Plata submarine canyon, in an area under the influence of the Malvinas current, which may explain its occurrence. These two species are the only two known jewel sea anemones in the Argentinean sea and are reported and described herein. 


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12336
Author(s):  
Anatolii Komisarenko ◽  
Vladimir Mordukhovich ◽  
Irina Ekimova ◽  
Andrey Imbs

Gastropod molluscs such as nudibranchs are important members of deep-sea benthic ecosystems. However, data on the trophic ecology and feeding specialization of these animals are limited to date. The method of fatty acid trophic markers (FATM) was applied to determine the dietary preferences of nudibranchs off the Kuril Islands. Fatty acid (FA) compositions of Dendronotus sp., Tritonia tetraquetra, and Colga pacifica collected from deep waters were analyzed and compared with those of Aeolidia papillosa and Coryphella verrucosa from the offshore zone. The high level of FATM such as 22:5n-6 and C20 monounsaturated FAs indicated that Dendronotus sp. preys on sea anemones and/or anthoathecates hydroids similarly to that of shallow-water species A. papillosa and C. verrucosa. The high percentage of tetracosapolyenoic acids and the ratio 24:6n-3/24:5n-6 indicated that T. tetraquetra preys on soft corals such as Gersemia and/or Acanella at a depth of 250 m, but soft corals of the family Primnoidae may be the main item in the diet of T. tetraquetra at a depth of 500 m. The high content of Δ 7,13-22:2 and 22:6n-3 shows that C. pacifica can feed on bryozoans. In C. pacifica, 22:5n-6 may be synthesized intrinsically by the mollusks, whereas odd-chain and branched saturated FAs originate from associated bacteria.


2021 ◽  
Vol 288 (1945) ◽  
pp. 20203169
Author(s):  
Daniela Praher ◽  
Bob Zimmermann ◽  
Rohit Dnyansagar ◽  
David J. Miller ◽  
Aurelie Moya ◽  
...  

MicroRNAs (miRNAs) are crucial post-transcriptional regulators that have been extensively studied in Bilateria, a group comprising the majority of extant animals, where more than 30 conserved miRNA families have been identified. By contrast, bilaterian miRNA targets are largely not conserved. Cnidaria is the sister group to Bilateria and thus provides a unique opportunity for comparative studies. Strikingly, like their plant counterparts, cnidarian miRNAs have been shown to predominantly have highly complementary targets leading to transcript cleavage by Argonaute proteins. Here, we assess the conservation of miRNAs and their targets by small RNA sequencing followed by miRNA target prediction in eight species of Anthozoa (sea anemones and corals), the earliest-branching cnidarian class. We uncover dozens of novel miRNAs but only a few conserved ones. Further, given their high complementarity, we were able to computationally identify miRNA targets in each species. Besides evidence for conservation of specific miRNA target sites, which are maintained between sea anemones and stony corals across 500 Myr of evolution, we also find indications for convergent evolution of target regulation by different miRNAs. Our data indicate that cnidarians have only few conserved miRNAs and corresponding targets, despite their high complementarity, suggesting a high evolutionary turnover.


2018 ◽  
Author(s):  
Yeonsu Jeon ◽  
Seung Gu Park ◽  
Nayun Lee ◽  
Jessica A. Weber ◽  
Hui-Su Kim ◽  
...  

Background: Coral reefs composed of stony corals are threatened by global marine environmental changes. However, soft coral communities composed of octocorallian species, appear more resilient. The genomes of several species of cnidarians have been published, including stony corals, sea anemones, and hydra, but as of yet no octocoral species. To fill this phylogenetic gap within the cnidarian, we sequenced the octocoral, Dendronephthya gigantea, a non-symbiotic soft coral, commonly known as the carnation coral. Findings: The D. gigantea genome size is approximately 276 Mb. A high-quality genome assembly was constructed using 29.85Gb (108x coverage) of PacBio long reads and 35.54Gb (128x coverage) of Illumina short paired-end reads resulting in the largest N50 value reported among cnidarian of 1.4 Mb. About 12 % of the genome consisted of repetitive elements. We found 28,879 protein-coding genes. This gene set contained about 94% metazoan single-copy orthologs, indicating the gene models were predicted with high quality compared to other cnidarians. Based on molecular phylogenetic analysis, octocoral and hexacoral divergence occurred approximately 544 million years ago. Moreover, there is a clear difference in Hox gene composition: unlike in hexacorals, Antp superclass member Evx gene was absent in D. gigantea. Conclusions: We present the first genome assembly of a non-symbiotic octocoral, D. gigantea to aid in the comparative genomic analysis of cnidarians, including comparisons of stony and soft corals and symbiotic and non-symbiotic corals. In addition, the genome of this species may provide clues about differential genetic coping mechanisms between soft and stony coral regarding the global warming.


2020 ◽  
Vol 10 (4) ◽  
pp. 93-97
Author(s):  
Anil Kumar A ◽  
Raja Sheker K ◽  
Naveen B ◽  
Abhilash G ◽  
Akila CR

Seas assets that give us a variety of characteristic items to control bacterial, contagious and viral ailment and mostly utilized for malignancy chemotherapy practically from spineless creatures, for example, bryozoans, wipes, delicate corals, coelenterates, ocean fans, ocean bunnies, molluscs and echinoderms. In the previous 30 - 40 years, marine plants and creatures have been the focal point of overall endeavours to characterize the regular results of the marine condition. Numerous marine characteristic items have been effectively exceptional to the last phases of clinical preliminaries, including dolastatin-10, a group of peptides disengaged from Indian ocean rabbit, Dollabella auricularia. Ecteinascidin-743 from mangrove tunicate Ecteinascidia turbinata, Didemnins was isolated from Caribbean tunicate Trididemnum solidum and Conopeptides from cone snails (Conus sp.), and a developing number of up-and-comers have been chosen as promising leads for expanded pre-clinical appraisals. Sea anemones possess numerous tentacles containing stinging cells or cnidocytes. The stinging cells are equipped with small organelles known as nematocysts. The two species of sea anemones namely, Heteractis magnificaandStichodactyla haddoni, were collected from Mandapam coastal waters of Ramanathapuram district, Tamilnadu, India. The Nematocyst was collected and centrifuged, and the supernatant was lyophilized and stored for further analysis. The amount of protein from Heteractis Magnifica and Stichodactyla haddoni was estimated. The crude extract has shown haemolytic activity on chicken blood and goat blood. In the antibacterial activity of the sea anemone against six bacterial strains Staphylococcus aureus, Salmonella typhii, Salmonella paratyphii, Klebsiella pneumonia, Vibrio cholerae, Pseudomonas aeruginosa. Antibacterial activity of H. Magnifica and S.haddoni was measured as the radius of the zone of inhibition.


2019 ◽  
Vol 18 (30) ◽  
pp. 2555-2566 ◽  
Author(s):  
Bhaswati Chatterjee

The resistance to chemotherapeutics by the cancerous cells has made its treatment more complicated. Animal venoms have emerged as an alternative strategy for anti-cancer therapeutics. Animal venoms are cocktails of complex bioactive chemicals mainly disulfide-rich proteins and peptides with diverse pharmacological actions. The components of venoms are specific, stable, and potent and have the ability to modify their molecular targets thus making them good therapeutics candidates. The isolation of cancer-specific components from animal venoms is one of the exciting strategies in anti-cancer research. This review highlights the identified venom peptides and proteins from different venomous animals like snakes, scorpions, spiders, bees, wasps, snails, toads, frogs and sea anemones and their anticancer activities including inhibition of proliferation of cancer cells, their invasion, cell cycle arrest, induction of apoptosis and the identification of involved signaling pathways.


2019 ◽  
Vol 19 (2) ◽  
pp. 114-118
Author(s):  
Gian Luigi Mariottini ◽  
Irwin Darren Grice

Natural compounds extracted from organisms and microorganisms are an important resource for the development of drugs and bioactive molecules. Many such compounds have made valuable contributions in diverse fields such as human health, pharmaceutics and industrial applications. Presently, however, research on investigating natural compounds from marine organisms is scarce. This is somewhat surprising considering that the marine environment makes a major contribution to Earth's ecosystems and consequently possesses a vast storehouse of diverse marine species. Interestingly, of the marine bioactive natural compounds identified to date, many are venoms, coming from Cnidarians (jellyfish, sea anemones, corals). Cnidarians are therefore particularly interesting marine species, producing important biological compounds that warrant further investigation for their development as possible therapeutic agents. From an experimental aspect, this review aims to emphasize and update the current scientific knowledge reported on selected biological activity (antiinflammatory, antimicrobial, antitumoral, anticoagulant, along with several less studied effects) of Cnidarian venoms/extracts, highlighting potential aspects for ongoing research towards their utilization in human therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document