Innovations in Crop Production: An Amalgamation of Abiotic Stress Physiology and Technology

2021 ◽  
pp. 1-30
Author(s):  
Shreya Gupta ◽  
Shabir A. Rather
2021 ◽  
Author(s):  
Tariq Aftab ◽  
Rehman Hakeem

2021 ◽  
Author(s):  
Tariq Aftab ◽  
Khalid Rehman Hakeem

Helia ◽  
2018 ◽  
Vol 41 (68) ◽  
pp. 83-108 ◽  
Author(s):  
Muhammad Mubashar Hussain ◽  
Maria Kausar ◽  
Saeed Rauf ◽  
M. Farukh Zafar Khan ◽  
Jakub Paderweski ◽  
...  

AbstractAbiotic stresses including drought are major crop production constraints. However, specific functional phenotypic markers induce resistance against these stresses. Therefore, a study was initiated to study the variability, inheritance and selection of epicuticular waxes (EW) and leaf hairiness (LH) along with low cell membrane injuries (CMI) within F2 populations derived by crossing H. annuus×H. argophyllus lines. These traits have been shown to be associated with drought tolerance of Helianthus argophyllus and thus study aims to introgress these traits in Helinathus annuus. The studied parent populations showed contrasting values of the traits. The drought susceptible line CMS-14 and CMS-20 showed lower epicuticular waxes (0.79, 0.69 mg g−1), leaf hairiness (0.75, 1.53) and higher cell membrane injury (40.90, 55.76 %) respectively while drought resistant line Argo 1802 and 1806 showed higher epicuticular waxes (2.28, 3.18), leaf hairiness (3.71, 3.80) and lower cell membrane injury (14.22, 21.54 %) respectively. The F1 hybrids had mean values of the three studied parameters i. e. epicuticular waxes (1.50 mg g−1), cell membrance injury (32.54 %) and leaf hairiness (2.74) in the range of parent lines, but some of F2 individuals extend beyond this range (Parents and F1s). The two-step selections maintained high variability especially of LH for set of F2 individuals (H. annuus CMS-20×H. argophyllus 1806). Simultaneous selection of F2 individuals with high values of LH or EW with low CMI was possible. The selected plants were further studied for narrow leaf, high fertility and silver canopy color. Selected material was promoted as the candidate of inbred line. Plant (F4) having introgressed traits (silver canopy) showed lower yield (19 %) than green leafed plants (53 %) and commercial hybrids under drought stress (63 % and 53 %). The study could help to increase the abiotic stress tolerance, minimize the yield losses under drought stress and increase functional diversity within sunflower.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Dalma Nagy-Réder ◽  
Zsófia Birinyi ◽  
Marianna Rakszegi ◽  
Ferenc Békés ◽  
Gyöngyvér Gell

Global climate change in recent years has resulted in extreme heat and drought events that significantly influence crop production and endanger food security. Such abiotic stress during the growing season has a negative effect on yield as well as on the functional properties of wheat grain protein content and composition. This reduces the value of grain, as these factors significantly reduce end-use quality. In this study, four Hungarian bread wheat cultivars (Triticum aestivum ssp. aestivum) with different drought and heat tolerance were examined. Changes in the size- and hydrophobicity-based distribution of the total proteins of the samples have been monitored by SE- and RP-HPLC, respectively, together with parallel investigations of changes in the amounts of the R5 and G12 antibodies related to celiac disease immunoreactive peptides. Significant difference in yield, protein content and composition have been observed in each cultivar, altering the amounts of CD-related gliadin, as well as the protein parameters directly related to techno-functional properties (Glu/Gli ratio, UPP%). The extent of changes largely depended on the timing of the abiotic stress. The severity of the negative effect depended on the growth stage in which abiotic stress occurred.


Author(s):  
Geoffrey Onaga ◽  
Kerstin Wydra

Abstract This chapter provides an overview of the recent significant perspectives on molecules involved in response and tolerance to drought and salinity, the 2 major abiotic stresses affecting crop production, and highlights major molecular components identified in major cereals.


2020 ◽  
Vol 9 (4) ◽  
pp. 444-459 ◽  
Author(s):  
Swati Sindhu ◽  
Anupma Dahiya ◽  
Rajesh Gera ◽  
Satyavir Singh Sindhu

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 788 ◽  
Author(s):  
Youngdae Yoon ◽  
Deok Hyun Seo ◽  
Hoyoon Shin ◽  
Hui Jin Kim ◽  
Chul Min Kim ◽  
...  

Abiotic stresses, such as drought, high temperature, and salinity, affect plant growth and productivity. Furthermore, global climate change may increase the frequency and severity of abiotic stresses, suggesting that development of varieties with improved stress tolerance is critical for future sustainable crop production. Improving stress tolerance requires a detailed understanding of the hormone signaling and transcriptional pathways involved in stress responses. Abscisic acid (ABA) and jasmonic acid (JA) are key stress-response hormones in plants, and some stress-responsive transcription factors such as ABFs and MYCs function as direct components of ABA and JA signaling, playing a pivotal role in plant tolerance to abiotic stress. In addition, extensive studies have identified other stress-responsive transcription factors belonging to the NAC, AP2/ERF, MYB, and WRKY families that mediate plant response and tolerance to abiotic stress. These suggest that transcriptional regulation of stress-responsive genes is an essential step to determine the mechanisms underlying plant stress responses and tolerance to abiotic stress, and that these transcription factors may be important targets for development of crops with enhanced abiotic stress tolerance. In this review, we briefly describe the mechanisms underlying plant abiotic stress responses, focusing on ABA and JA metabolism and signaling pathways. We then summarize the diverse array of transcription factors involved in plant responses to abiotic stress, while noting their potential applications for improvement of stress tolerance.


Author(s):  
Manuel A Matamoros ◽  
Manuel Becana

Abstract Legumes include several major crops that are able to fix atmospheric nitrogen in symbiotic root nodules, thus reducing the demand for nitrogen fertilizers and contributing to sustainable agriculture. Global change models predict increases in temperature and more extreme weather conditions. This scenario might increase plant exposure to abiotic stresses and negatively affect crop production. Regulation of whole-plant physiology and nitrogen fixation in legumes during abiotic stress is complex and only a few mechanisms have been elucidated. Reactive oxygen (ROS), nitrogen (RNS), and sulfur (RSS) species are key players in the acclimation and stress tolerance of plants. However, the specific redox-dependent signaling pathways are far from understood. One mechanism by which ROS, RNS, and RSS fulfil their signaling role is the post-translational modification (PTM) of proteins. Redox-based PTMs mostly occur in the cysteine thiol group (oxidation, S-nitrosylation, S-glutathionylation, persulfidation), but also in methionine (oxidation), tyrosine (nitration), and lysine and arginine (carbonylation/glycation) residues. Unraveling PTM patterns under different types of stress and establishing the functional implications may reveal so far unknown underlying mechanisms of the plant and nodule responses to adverse conditions. Here we review the current knowledge on redox PTMs in legumes and their possible consequences in plant and nodule biology.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Mohammad Saidur Rhaman ◽  
Shahin Imran ◽  
Farjana Rauf ◽  
Mousumi Khatun ◽  
Carol C. Baskin ◽  
...  

Plants are often exposed to abiotic stresses such as drought, salinity, heat, cold, and heavy metals that induce complex responses, which result in reduced growth as well as crop yield. Phytohormones are well known for their regulatory role in plant growth and development, and they serve as important chemical messengers, allowing plants to function during exposure to various stresses. Seed priming is a physiological technique involving seed hydration and drying to improve metabolic processes prior to germination, thereby increasing the percentage and rate of germination and improving seedling growth and crop yield under normal and various biotic and abiotic stresses. Seed priming allows plants to obtain an enhanced capacity for rapidly and effectively combating different stresses. Thus, seed priming with phytohormones has emerged as an important tool for mitigating the effects of abiotic stress. Therefore, this review discusses the potential role of priming with phytohormones to mitigate the harmful effects of abiotic stresses, possible mechanisms for how mitigation is accomplished, and roles of priming on the enhancement of crop production.


2021 ◽  
Vol 22 (23) ◽  
pp. 12970
Author(s):  
Jagadish Rane ◽  
Ajay Kumar Singh ◽  
Mahesh Kumar ◽  
K. M. Boraiah ◽  
Kamlesh K. Meena ◽  
...  

Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are the major constraints in crop production. These abiotic stresses are likely to be amplified by climate change with varying temporal and spatial dimensions across the globe. The knowledge about the effects of abiotic stressors on major cereal and legume crops is essential for effective management in unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits associated with tolerance in plants, in addition to the molecular control of stress-responsive genes. Some of these studies have paved the way for new opportunities to address the molecular basis of stress responses in plants and identify novel traits and associated genes for the genetic improvement of crop plants. The present review examines the responses of crops under abiotic stresses in terms of changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops. It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes associated with stress tolerance.


Sign in / Sign up

Export Citation Format

Share Document