Supercritical solvent impregnation of natural bioactive compounds in N-carboxybutyl chitosan membranes for the development of topical wound healing applications

2011 ◽  
pp. 329-330
Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2807
Author(s):  
Meysam Aliabadi ◽  
Bor Shin Chee ◽  
Mailson Matos ◽  
Yvonne J. Cortese ◽  
Michael J. D. Nugent ◽  
...  

Microfibrillated cellulose films have been gathering considerable attention due to their high mechanical properties and cheap cost. Additionally, it is possible to include compounds within the fibrillated structure in order to confer desirable properties. Ilex paraguariensis A. St.-Hil, yerba mate leaf extract has been reported to possess a high quantity of caffeoylquinic acids that may be beneficial for other applications instead of its conventional use as a hot beverage. Therefore, we investigate the effect of blending yerba mate extract during and after defibrillation of Eucalyptus sp. bleached kraft paper by ultrafine grinding. Blending the extract during defibrillation increased the mechanical and thermal properties, besides being able to use the whole extract. Afterwards, this material was also investigated with high content loadings of starch and glycerine. The results present that yerba mate extract increases film resistance, and the defibrillated cellulose is able to protect the bioactive compounds from the extract. Additionally, the films present antibacterial activity against two known pathogens S. aureus and E. coli, with high antioxidant activity and increased cell proliferation. This was attributed to the bioactive compounds that presented faster in vitro wound healing, suggesting that microfibrillated cellulose (MFC) films containing extract of yerba mate can be a potential alternative as wound healing bandages.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 447 ◽  
Author(s):  
Fabian Ávila-Salas ◽  
Adolfo Marican ◽  
Soledad Pinochet ◽  
Gustavo Carreño ◽  
Oscar Valdés ◽  
...  

This research proposes the rational modeling, synthesis and evaluation of film dressing hydrogels based on polyvinyl alcohol crosslinked with 20 different kinds of dicarboxylic acids. These formulations would allow the sustained release of simultaneous bioactive compounds including allantoin, resveratrol, dexpanthenol and caffeic acid as a multi-target therapy in wound healing. Interaction energy calculations and molecular dynamics simulation studies allowed evaluating the intermolecular affinity of the above bioactive compounds by hydrogels crosslinked with the different dicarboxylic acids. According to the computational results, the hydrogels crosslinked with succinic, aspartic, maleic and malic acids were selected as the best candidates to be synthesized and evaluated experimentally. These four crosslinked hydrogels were prepared and characterized by FTIR, mechanical properties, SEM and equilibrium swelling ratio. The sustained release of the bioactive compounds from the film dressing was investigated in vitro and in vivo. The in vitro results indicate a good release profile for all four analyzed bioactive compounds. More importantly, in vivo experiments suggest that prepared formulations could considerably accelerate the healing rate of artificial wounds in rats. The histological studies show that these formulations help to successfully reconstruct and thicken epidermis during 14 days of wound healing. Moreover, the four film dressings developed and exhibited excellent biocompatibility. In conclusion, the novel film dressings based on hydrogels rationally designed with combinatorial and sustained release therapy could have significant promise as dressing materials for skin wound healing.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ana Lima ◽  
Paula Batista-Santos ◽  
Eduarda Veríssimo ◽  
Patrícia Rebelo ◽  
Ricardo Boavida Ferreira

Abstract Background Aloe’s reported bioactivities (anticancer, anti-inflammatory and wound healing) suggest they might inhibit a subgroup of matrix metalloproteinases (MMPs) called gelatinases (MMP-2 and MMP-9). The goal of the present study was to compare the MMP inhibitory potential of two Aloe species, A. vera and A. arborescens. Methods Different types of extraction were tested and specific bioactive compounds were quantified. Cancer cell invasion inhibitory activities were measured in vitro using the wound healing assay in human colon cancer cells (HT29). Effects on gelatinase activities were further assessed by dye-quenched gelatin and gelatin zymography. Results Different types of extraction yielded significantly different levels of bioactivities and of bioactive compounds, which might be due to a greater amount of extractable bioactive compounds such as anthraquinones. Both A. arborescens and A. vera have potential as inhibitory agents in cancer cell proliferation via MMP-9 and MMP-2 enzymatic activity inhibition, being able to reduce colon cancer cell proliferation and migration but A. arborescens showed to be a more effective inhibitor of cancer cell migration than A. vera. Conclusion This work opens novel perspectives on the mode of action of Aloe species in cancer cell migration and may provide clues as to why there are so many conflicting results on Aloe’s activities.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Abubakar Amali Muhammad ◽  
Nur Aimi Syarina Pauzi ◽  
Palanisamy Arulselvan ◽  
Faridah Abas ◽  
Sharida Fakurazi

Moringa oleiferaLam. (M. oleifera) from the monogeneric familyMoringaceaeis found in tropical and subtropical countries. The present study was aimed at exploring thein vitrowound healing potential ofM. oleiferaand identification of active compounds that may be responsible for its wound healing action. The study included cell viability, proliferation, and wound scratch test assays. Different solvent crude extracts were screened, and the most active crude extract was further subjected to differential bioguided fractionation. Fractions were also screened and most active aqueous fraction was finally obtained for further investigation. HPLC and LC-MS/MS analysis were used for identification and confirmation of bioactive compounds. The results of our study demonstrated that aqueous fraction ofM. oleiferasignificantly enhanced proliferation and viability as well as migration of human dermal fibroblast (HDF) cells compared to the untreated control and other fractions. The HPLC and LC-MS/MS studies revealed kaempferol and quercetin compounds in the crude methanolic extract and a major bioactive compound Vicenin-2 was identified in the bioactive aqueous fraction which was confirmed with standard Vicenin-2 using HPLC and UV spectroscopic methods. These findings suggest that bioactive fraction ofM. oleiferacontaining Vicenin-2 compound may enhance faster wound healingin vitro.


2021 ◽  
Author(s):  
Laxmi Parwani ◽  
Mansi Shrivastava ◽  
Jaspreet Singh

The wound care market is rapidly expanding due to the development of innumerable dressings that exhibit specific healing requirements for different wound types. The use of biomaterials as suitable wound dressing material is highly advantageous due to their biocompatibility, biodegradability, and non-toxicity. Cyanobacteria have been widely explored for their potential applications in wound healing, as they are the rich source of bioactive compounds with antibacterial, antitumor, antiviral, antioxidant, and antifungal activities. In recent years this group of organisms has been widely studied due to their immense potential in biomedical applications. Although their different bioactivities can support wound healing in different ways, very few forms have proven utility as a wound-healing agent. This chapter gives an insight into the potential of cyanobacteria in wound healing. Different bioactive compounds present in variable forms of cyanobacteria and their associated activities were reported to support tissue regeneration and wound healing acceleration. As the demand for cost-effective, bioactive wound care products is ever increasing, these organisms have immense potential to be utilized for the development of bioactive wound dressings. Hence, various bioactive compounds of cyanobacteria, their associated activities, and roles in wound healing have been briefly reviewed in this chapter.


Author(s):  
Ghegade R. Y ◽  
Aher A. N

Calotropis belongs to two species, the majority of which are native to India, Indonesia, Malaysia, Thailand, and Sri Lanka. Calotropis gigantea, also known as giant milk weed plant that grows in large quantities, is a member of the Apocynaceae (Asclepidiaceae) family of latex-producing plants. Traditionally C. gigantea is used to treat a variety of diseases and ethno-medicinal claims. In the last few decades, sophisticated analytical methods have been used to study C. gigantea for its medicinal properties and a number of bioactive compounds have been isolated and analyzed from various parts of the plant. Analgesic, antimicrobial, antioxidant, anti-pyretic, insecticidal, cytotoxic, hepatoprotective, pregnancy-interrupting, purgative, procoagulant, and wound-healing properties have been identified and found to be effective which make it a valuable source of therapeutic compounds. This review attempts to cover ethnobotany, pharmacology, phytochemistry, and phytopharmacological activities of C. gigantea.


Sign in / Sign up

Export Citation Format

Share Document