scholarly journals Potential of Cyanobacteria in Wound Healing

2021 ◽  
Author(s):  
Laxmi Parwani ◽  
Mansi Shrivastava ◽  
Jaspreet Singh

The wound care market is rapidly expanding due to the development of innumerable dressings that exhibit specific healing requirements for different wound types. The use of biomaterials as suitable wound dressing material is highly advantageous due to their biocompatibility, biodegradability, and non-toxicity. Cyanobacteria have been widely explored for their potential applications in wound healing, as they are the rich source of bioactive compounds with antibacterial, antitumor, antiviral, antioxidant, and antifungal activities. In recent years this group of organisms has been widely studied due to their immense potential in biomedical applications. Although their different bioactivities can support wound healing in different ways, very few forms have proven utility as a wound-healing agent. This chapter gives an insight into the potential of cyanobacteria in wound healing. Different bioactive compounds present in variable forms of cyanobacteria and their associated activities were reported to support tissue regeneration and wound healing acceleration. As the demand for cost-effective, bioactive wound care products is ever increasing, these organisms have immense potential to be utilized for the development of bioactive wound dressings. Hence, various bioactive compounds of cyanobacteria, their associated activities, and roles in wound healing have been briefly reviewed in this chapter.

2021 ◽  
Vol 19 ◽  
pp. 228080002110549
Author(s):  
Michael Rodrigues ◽  
Thilagavati Govindharajan

A hydrocellular functional material as a wound dressing is developed and it is found to be superior in its efficacy as compared to some of the comparator controls in diabetic wound healing studies. A study on wound contraction and Histopathological analysis is done in rats. The efficacy of the dressing is comparable to the established wound dressings like Carboxymethyl cellulose alginate dressings and autolytic enzyme based hydrogel. It is found to be superior to Polyhexamethylene biguanide dressing used as reference controls in this study. The reason for good wound healing performance of the dressing can be attributed to a combined property of effective exudates management and broad spectrum antimicrobial effect. The concept of functional hydro cellular material has shown good results due to the excellent balance of exudates pickup and drying it out. This ensures moist wound healing conditions on the wound. Because of its porous nature it allows good air flow and gaseous exchange in the structure. The cationic sites created on the surface of the dressing ensure a good antimicrobial action on the exudates in the dressing. It reduces the infection load on the wound. The nonleaching property of the dressing also helps in preventing the generation of more resistant and mutant strains of the microbes. The developed dressing can be used as a relatively durable long lasting dressing for wound management in diabetic wounds. The need of repetitive wound dressing changes can be brought down with this concept of dressing. It is not only cost effective in terms of its material cost but also is a cost effective solution when entire wound management cost is considered. Such novel wound dressing material can change the quality of life of diabetic wound patients especially in developing world, where access to functional advanced wound care dressings is limited.


2021 ◽  
Vol 18 ◽  
Author(s):  
Xinchi Feng ◽  
Jinsong Hao

: Chronic wounds remain a significant public problem and the development of wound treatments has been a research focus for the past few decades. Despite advances in the products derived from endogenous substances involved in a wound healing process (e.g. growth factors, stem cells, and extracellular matrix), effective and safe wound therapeutics are still limited. There is an unmet need to develop new therapeutics. Various new pathways and targets have been identified and could become a molecular target in designing novel wound agents. Importantly, many existing drugs that target these newly identified pathways could be repositioned for wound therapy, which will facilitate fast translation of research findings to clinical applications. This review discusses the newly identified pathways/targets and their potential uses in the development of wound therapeutics. Some herbs and amphibian skins have been traditionally used for wound repairs and their active ingredients have been found to act in these new pathways. Hence, screening these natural products for novel wound therapeutics remains a viable approach. The outcomes of wound care using natural wound therapeutics could be improved if we can better understand their cellular and molecular mechanisms and fabricate them in appropriate formulations, such as using novel wound dressings and nano-engineered materials. Therefore, we also provide an update on the advances in the wound therapeutics from natural sources. Overall, this review offers new insights into novel wound therapeutics.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2010 ◽  
Author(s):  
Irina Negut ◽  
Gabriela Dorcioman ◽  
Valentina Grumezescu

In order to overcome the shortcomings related to unspecific and partially efficient conventional wound dressings, impressive efforts are oriented in the development and evaluation of new and effective platforms for wound healing applications. In situ formed wound dressings provide several advantages, including proper adaptability for wound bed microstructure and architecture, facile application, patient compliance and enhanced therapeutic effects. Natural or synthetic, composite or hybrid biomaterials represent suitable candidates for accelerated wound healing, by providing proper air and water vapor permeability, structure for macro- and microcirculation, support for cellular migration and proliferation, protection against microbial invasion and external contamination. Besides being the most promising choice for wound care applications, polymeric biomaterials (either from natural or synthetic sources) may exhibit intrinsic wound healing properties. Several nanotechnology-derived biomaterials proved great potential for wound healing applications, including micro- and nanoparticulate systems, fibrous scaffolds, and hydrogels. The present paper comprises the most recent data on modern and performant strategies for effective wound healing.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2741
Author(s):  
Claudia Keil ◽  
Christopher Hübner ◽  
Constanze Richter ◽  
Sandy Lier ◽  
Lars Barthel ◽  
...  

Chronic non-healing wounds represent a substantial economic burden to healthcare systems and cause a considerable reduction in quality of life for those affected. Approximately 0.5–2% of the population in developed countries are projected to experience a chronic wound in their lifetime, necessitating further developments in the area of wound care materials. The use of aerogels for wound healing applications has increased due to their high exudate absorbency and ability to incorporate therapeutic substances, amongst them trace metals, to promote wound-healing. This study evaluates the swelling behavior of Ca-Zn-Ag-loaded alginate aerogels and their metal release upon incubation in human sweat or wound fluid substitutes. All aerogels show excellent liquid uptake from any of the formulas and high liquid holding capacities. Calcium is only marginally released into the swelling solvents, thus remaining as alginate bridging component aiding the absorption and fast transfer of liquids into the aerogel network. The zinc transfer quota is similar to those observed for common wound dressings in human and animal injury models. With respect to the immune regulatory function of zinc, cell culture studies show a high availability and anti-inflammatory activity of aerogel released Zn-species in RAW 264.7 macrophages. For silver, the balance between antibacterial effectiveness versus cytotoxicity remains a significant challenge for which the alginate aerogels need to be improved in the future. An increased knowledge of the transformations that alginate aerogels undergo in the course of the fabrication as well as during wound fluid exposure is necessary when aiming to create advanced, tissue-compatible aerogel products.


2020 ◽  
Author(s):  
Ashar Prima ◽  
Amzal Mortin Andas ◽  
Asmiana Saputri Ilyas

Diabetic ulcer is one of the main reasons of morbidity in diabetic patients, and it accounts for about 50% of non-traumatic amputations throughout the world. Wound dressing is an integral part in the management of diabetic ulcer. The Literature Review intends to analyze the effectiveness of natural ingredients as complementary alternative medicine used in wound care for diabetic ulcer patients. A Method used is critical review full-textof the last 10 years periods(2007-2017) in English language. The Database used is PubMed, ScienceDirect, EBSCOhost, dan SAGE Journal. Search strategies used PICO (Population, Intervention, Comparison, Outcome), key word :“Diabetic Ulcer” and “Wound Healing’ and “ Complementary Alternative Medicine”. The articles selected gradually and obtained 18 articles. The Result of the literature review found 4 natural ingredient that can be used as dressing in the treatment of diabetic ulcer. The used of dressings can be used as an option in diabetic wound care because it effectively promote in wound healing and more cost effective.


Author(s):  
Rajesh Kesavan ◽  
Changam Sheela Sasikumar ◽  
V.B. Narayanamurthy ◽  
Arvind Rajagopalan ◽  
Jeehee Kim

Chronic foot ulcers are the leading cause of prolonged hospitalization and loss of social participation in people with diabetes. Conventional management of diabetic foot ulcers (DFU) is associated with slow healing, high cost, and recurrent visits to the hospital. Currently, the application of autologous lipotransfer is more popular, as the regenerative and reparative effects of fat are well established. Herein we report the efficacy of minimally manipulated extracellular matrix (MA-ECM) prepared from autologous homologous adipose tissue by using 3D bioprinting in DFU (test group) in comparison to the standard wound care (control group). A total of 40 subjects were screened and randomly divided into test and control groups. In the test group, the customized MA-ECM was printed as a scaffold from the patient autologous fat using a 3D bioprinter device and applied to the wound directly. The control group received standard wound care and weekly follow-up was done for all the patients. We evaluated the efficacy of this novel technology by assessing the reduction in wound size and attainment of epithelialization. The patients in the test group (n = 17) showed complete wound closure with re-epithelialization approximately within a period of 4 weeks. On the other hand, most of the patients in the control group (n = 16) who received standard wound dressings care showed a delay in wound healing in comparison to the test group. This technique can be employed as a personalized therapeutic method to accelerate diabetic wound healing and may provide a promising potential alternative approach to protect against lower foot amputation a most common complication in diabetes.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
M. Jannathul Firdhouse ◽  
P. Lalitha

Silver nanoparticles possess unique properties which find myriad applications such as antimicrobial, anticancer, larvicidal, catalytic, and wound healing activities. Biogenic syntheses of silver nanoparticles using plants and their pharmacological and other potential applications are gaining momentum owing to its assured rewards. This critical review is aimed at providing an insight into the phytomediated synthesis of silver nanoparticles, its significant applications in various fields, and characterization techniques involved.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Rachel W Davis ◽  
Youmna A Sherif ◽  
Catherine Anne Morrison

Abstract The provision of intestinal stoma care is challenging in austere settings due to limitations in surgical and wound care access as well as the high cost and sparsity of ostomy supplies. As a result, many surgical patients suffer from ostomy-related complications such as peristomal wounds and are unable to find relief for these complications from standard treatments and measures. This article describes the external stoma diversion, a cost-effective palliative surgical procedure that assists in the healing of peristomal wounds in resource-limited settings.


Sign in / Sign up

Export Citation Format

Share Document