Variation in Concrete Strength and Air Content Due to Fly Ash

2014 ◽  
pp. 35-50
2020 ◽  
Vol 71 (7) ◽  
pp. 775-788
Author(s):  
Quyet Truong Van ◽  
Sang Nguyen Thanh

The utilisation of supplementary cementitious materials (SCMs) is widespread in the concrete industry because of the performance benefits and economic. Ground granulated blast furnace slag (GGBFS) and fly ash (FA) have been used as the SCMs in concrete for reducing the weight of cement and improving durability properties. In this study, GGBFS at different cement replacement ratios of 0%, 20%, 40% and 60% by weight were used in fine-grained concrete. The ternary binders containing GGBFS and FA at cement replacement ratio of 60% by weight have also evaluated. Flexural and compressive strength test, rapid chloride permeability test and under-water abrasion test were performed. Experimental results show that the increase in concrete strength with GGBFS contents from 20% to 40% but at a higher period of maturity (56 days and more). The chloride permeability the under-water abrasion reduced with the increasing cement replacement by GGBFS or a combination of GGBFS and FA


2001 ◽  
Vol 7 (6) ◽  
pp. 446-452
Author(s):  
Gintautas Skripkiūnas ◽  
Vitoldas Vaitkevičius

The results of experiments dealing with coarse aggregate concentration influence on the concrete strength and the structure of hardened cement paste and mortar of concrete are presented in the paper. Experiments were performed on concrete with dense coarse aggregate (crushed granite) which strength is more than strength of mortar and lightweight porous aggregate (expanded clay aggregate) with strength less than that of mortar. Physical and mechanical properties of concrete with dense coarse aggregate are presented in Table 1 and the concretes with the porous coarse aggregate in Table 2. The decrease of entrained air content with the increase of coarse aggregate concentration ϕσt were determined both for concretes with dense and porous coarse aggregate. The entrained air has a significant effect on concrete strength—1% of entrained air decreases the strength of concrete about 5% [11]. The influence of the coarse aggregate concentration on the compressive strength of concrete with the constant air content is presented in Figs 3 and 4. With the increase of coarse aggregate concentration the concrete strength decreases when the entrained air content in concrete is constant. The main reasons of the concrete strength reduction are the stress concentration and structural defects near the coarse aggregate. Coarse aggregate affects the structure of mortar. Dense coarse aggregate has negligible water absorption and does not change water content in mortar of concrete, and capillary porosity of mortar remains constant when the concentration of dense coarse aggregate ϕ st increases (Fig 5). Porous coarse aggregate (expanded clay aggregate) has large water absorption (more than 16%), therefore water content in mortar of concrete is reduced and capillary porosity of mortar is significantly reduced when the concentration of porous coarse aggregate ϕ st increases (Fig 5). The entrained air content in mortar with both dense and porous coarse aggregate decreases inverse proportionally to coarse aggregate concentration ϕ st (Fig 6). The investigations have shown that suitable selection of properties and volumetric concentration of coarse aggregate can reduce stress concentration in concrete and increase the concrete strength.


2021 ◽  
Vol 72 (2) ◽  
pp. 27-37
Author(s):  
Yang Li ◽  
Zhendi Wang ◽  
Ling Wang

The effectiveness of Air entraining agent (AEA) in concrete under low air pressure in the plateau area decreased. A type of new AEA, named MRE was synthesized to increase bubbles` stability in fresh concrete under low air pressure. The performance of MRE solution and concrete with MRE were tested under 60 kPa and 100 kPa compared with commercially gemini AEA (DCC). The test results showed that the foam volume of MRE and DCC solution under 60 kPa was reduced by 3% and 9% than under 100 kPa. The bubble liquid film strength of MRE is 63% higher than that of DCC. For concrete with MRE and DCC under 60 kPa, the air content was 2% and 16% lower, the relative dynamic modulus of concrete reduced by 6% and 15%, and the bubble spacing factor under 60 kPa increased by 17% and 39% respectively compared with that under 100 kPa. MRE can increase the freeze-thaw resistance of concrete under low air pressure without affecting concrete strength and is suitable for high altitude concrete.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Hong-zhu Quan ◽  
Hideo Kasami

In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%–20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized.


1997 ◽  
Vol 1575 (1) ◽  
pp. 92-101
Author(s):  
Richard K. Smutzer ◽  
Sedat Gulen ◽  
Youlanda K. Belew ◽  
Virgil L. Anderson

The Indiana Department of Transportation is involved in preparing statistically sound specifications for strong and durable concrete used in quality assurance programs. Previous laboratory studies relating concrete strength to air content and concrete mix designs dealt with variation in compressive strength. This study searched for a statistically sound relationship between air content, concrete mix designs, and flexural strength. This study also developed a high-pressure method of hardened concrete air content determination. Sixty-four independent batches (combinations) of concrete were produced, each batch was subjected to a total of 24 tests—4 plastic and 20 hardened. The design factors were aggregate type and gradation, plastic air content, cement, and pozzolanic content and testing operator. After plastic testing, three flexural strength beams were cast from each batch of concrete. The experimental design response variables consisted of flexural, compressive, and split tensile strength along with pulse velocity. Analysis of variances, indicated that the optimum flexural strength could be obtained using as-received stone course aggregate and an air content of between 6 percent and 7.9 percent, with no fly ash. A high-pressure air meter, similar to the meter developed by the Army Corps of Engineers, was used. A strong statistical correlation of determination, r2 = 0.94, was obtained between plastic and the hardened concrete air content using this meter.


2018 ◽  
Vol 195 ◽  
pp. 01012
Author(s):  
Kiki Dwi Wulandari ◽  
Januarti Jaya Ekaputri ◽  
Triwulan ◽  
Chikako Fujiyama ◽  
Davin H. E. Setiamarga

Specific microbial agents such as bacteria are often used in concrete to improve its performance. Some microbes act as self-healing agents to close cracks in concrete, and to increase concrete strength. This paper presents a study to observe the effects of microbe addition to two types of concrete mixtures the fly ash-based, as geopolymer paste, and portland cement paste containing fly ash. Furthermore, the investigation was conducted to compare the properties of each paste, such as its compressive strengths, specific gravities, porosity, microstructures, and XRay diffracting properties. The results indicate that microbial activities positively affected the properties of both, portland cement paste and geopolymer paste. The result reported here strongly suggests that fly ash can be used to produce a high quality, but environmental friendly construction material when it’s mixed together with useful microbes.


2012 ◽  
Vol 204-208 ◽  
pp. 3970-3973
Author(s):  
Reagan J. Case ◽  
Kai Duan ◽  
Thuraichamy G. Suntharavadivel

As a part of a large research program aiming at the cementitious materials containing recycled materials at Central Queensland University – Australia, the current paper presents the preliminary results of a study on the effects of fly ash, which is used to replace cement in concrete, on the concrete compressive strength. For this purpose, systematic experiments have been carried out to investigate the influences of fly ash ratio and age. The compressive strength of concrete specimens with replacement ratios of 15%, 30% and 45%, and aged 7 and 28 days are measured and are compared with those of the concrete specimens without fly ash at the same ages. The results demonstrate that the strength of fly ash containing concrete improves more slowly but more strongly with aging, than their fly ash free counterparts, and an optimum fly ash replacement ratio exists where the maximum compressive strength of fly ash containing concrete can be achieved, and the maximum strength for the specimens aged 28 days and above is higher that of fly ash free concrete. Furthermore, the observation strength behaviours are analysed and discussed in terms of the influences of fly ash on interface reactions and interface bonding strength.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4565 ◽  
Author(s):  
Lucyna Domagała

The aim of this study was to present the problem of durability of structural lightweight concrete made of a sintered fly ash aggregate. The issue of durability was researched for 12 concrete series in terms of their water absorption, water permeability, and freeze-thaw resistance. Additionally, the microstructure of several concretes was analyzed with a scanning electron microscope (SEM). In the durability research, the influences of the following parameters were taken into consideration: The initial moisture content of sintered fly ash (mc = 0, 17–18, and 24–25%); the aggregate grading (4/8 and 6/12 mm); and the water-cement ratio (w/c = 0.55 and 0.37). As a result of various compositions, the concretes revealed different properties. The density ranged from 1470 to 1920 kg/m3, and the corresponding strength ranged from 25.0 to 83.5 MPa. The durability research results of tested lightweight concretes showed that, despite considerably higher water absorption, a comparable water permeability and comparable or better freeze-thaw resistance in relation to normal-weight concrete may be present. Nevertheless, the fundamental requirement of lightweight concrete to achieve good durability requires the aggregate’s initial moisture content to be limited and a sufficiently tight cement matrix to be selected. The volume share of the cement matrix and aggregate, the cement content, and even the concrete strength are of secondary importance.


Sign in / Sign up

Export Citation Format

Share Document