Electrospun Biodegradable Polyester Micro-/Nanofibers for Drug Delivery and Their Clinical Applications

2016 ◽  
pp. 125-158
Author(s):  
Xin Zhao ◽  
Divia Hobson ◽  
Zhi Lin ◽  
Wenguo Cui
2018 ◽  
Vol 24 (8) ◽  
pp. 843-854 ◽  
Author(s):  
Weiguo Xu ◽  
Shujun Dong ◽  
Yuping Han ◽  
Shuqiang Li ◽  
Yang Liu

Hydrogels, as a class of materials for tissue engineering and drug delivery, have high water content and solid-like mechanical properties. Currently, hydrogels with an antibacterial function are a research hotspot in biomedical field. Many advanced antibacterial hydrogels have been developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs and structural diversity. In this article, an overview is provided on the preparation and applications of various antibacterial hydrogels. Furthermore, the prospects in biomedical researches and clinical applications are predicted.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1379 ◽  
Author(s):  
Sarah Stewart ◽  
Juan Domínguez-Robles ◽  
Ryan Donnelly ◽  
Eneko Larrañeta

The oral route is a popular and convenient means of drug delivery. However, despite its advantages, it also has challenges. Many drugs are not suitable for oral delivery due to: first pass metabolism; less than ideal properties; and side-effects of treatment. Additionally, oral delivery relies heavily on patient compliance. Implantable drug delivery devices are an alternative system that can achieve effective delivery with lower drug concentrations, and as a result, minimise side-effects whilst increasing patient compliance. This article gives an overview of classification of these drug delivery devices; the mechanism of drug release; the materials used for manufacture; the various methods of manufacture; and examples of clinical applications of implantable drug delivery devices.


2010 ◽  
Vol 51 (11) ◽  
pp. 5403 ◽  
Author(s):  
Henry F. Edelhauser ◽  
Cheryl L. Rowe-Rendleman ◽  
Michael R. Robinson ◽  
Daniel G. Dawson ◽  
Gerald J. Chader ◽  
...  

2015 ◽  
Vol 122 (3) ◽  
pp. 697-706 ◽  
Author(s):  
Russell R. Lonser ◽  
Malisa Sarntinoranont ◽  
Paul F. Morrison ◽  
Edward H. Oldfield

Convection-enhanced delivery (CED) is a bulk flow–driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.


2014 ◽  
Vol 3 (1) ◽  
Author(s):  
Claudia Campanella ◽  
Celeste Caruso Bavisotto ◽  
Antonella Marino Gammazza ◽  
Dragana Nikolic ◽  
Francesca Rappa ◽  
...  

Exosomes have recently been proposed as novel elements in the study of intercellular communication in normal and pathological conditions. The biomolecular composition of exosomes reflects the specialized functions of the original cells. Heat shock proteins (Hsps) are a group of chaperone proteins with diverse biological roles. In recent years, many studies have focused on the extracellular roles played by Hsps that appear to be involved in cancer development and immune system stimulation. Hsps localized on the surface of exosomes, secreted by normal and tumour cells, could be key players in intercellular cross-talk, particularly during the course of different diseases, such as cancer. Exosomal Hsps offer significant opportunities for clinical applications, including their use as potential novel biomarkers for the diagnoses or prognoses of different diseases, or for therapeutic applications and drug delivery.


Medicina ◽  
2019 ◽  
Vol 55 (5) ◽  
pp. 208 ◽  
Author(s):  
Jeremie D. Oliver ◽  
Emma P. DeLoughery ◽  
Nikita Gupta ◽  
Daniel Boczar ◽  
Andrea Sisti ◽  
...  

The risks of systemic anti-coagulation or its reversal are well known but accepted as necessary under certain circumstances. However, particularly in the plastic surgical patient, systemic alteration to hemostasis is often unnecessary when local therapy could provide the needed adjustments. The aim of this review was to provide a summarized overview of the clinical applications of topical anti- and pro-coagulant therapy in plastic and reconstructive surgery. While not a robust field as of yet, local tranexamic acid (TXA) has shown promise in achieving hemostasis under various circumstances, hemostats are widely used to halt bleeding, and local anticoagulants such as heparin can improve flap survival. The main challenge to the advancement of local therapy is drug delivery. However, with increasingly promising innovations underway, the field will hopefully expand to the betterment of patient care.


Sign in / Sign up

Export Citation Format

Share Document