scholarly journals Identification of Murine Uterine Genes Regulated in a Ligand-Dependent Manner by the Progesterone Receptor

Endocrinology ◽  
2005 ◽  
Vol 146 (8) ◽  
pp. 3490-3505 ◽  
Author(s):  
Jae-Wook Jeong ◽  
Kevin Y. Lee ◽  
Inseok Kwak ◽  
Lisa D. White ◽  
Susan G. Hilsenbeck ◽  
...  

Abstract Progesterone (P4) acting through its cognate receptor, the progesterone receptor (PR), plays an important role in uterine physiology. The PR knockout (PRKO) mouse has demonstrated the importance of the P4-PR axis in the regulation of uterine function. To define the molecular pathways regulated by P4-PR in the mouse uterus, Affymetrix MG U74Av2 oligonucleotide arrays were used to identify alterations in gene expression after acute and chronic P4 treatments. PRKO and wild-type mice were ovariectomized and then treated with vehicle or 1 mg P4 every 12 h. Mice were killed either 4 h after the first injection (acute P4 treatment) or after the fourth injection of P4 (chronic P4 treatment). At the genomic level, the major change in gene expression after acute P4 treatment was an increase in the expression of 55 genes. Conversely, the major change in gene expression after chronic P4 treatment was an overall reduction in the expression of 102 genes. In the analysis, retinoic acid metabolic genes, cytochrome P 450 26a1 (Cyp26a1), alcohol dehydrogenase 5, and aldehyde dehydrogenase 1a1 (Aldh1a1); kallikrein genes, Klk5 and Klk6; and specific transcription factors, GATA-2 and Cited2 [cAMP-corticosterone-binding protein/p300-interacting transactivator with glutamic acid (E) and aspartic acid (D)-rich tail], were validated as regulated by the P4-PR axis. Identification and analysis of these responsive genes will help define the role of PR in regulating uterine biology.

2006 ◽  
Vol 74 (6) ◽  
pp. 3618-3632 ◽  
Author(s):  
Heike Weighardt ◽  
Jörg Mages ◽  
Gabriela Jusek ◽  
Simone Kaiser-Moore ◽  
Roland Lang ◽  
...  

ABSTRACT Sepsis leads to the rapid induction of proinflammatory signaling cascades by activation of the innate immune system through Toll-like receptors (TLR). To characterize the role of TLR signaling through MyD88 for sepsis-induced transcriptional activation, we investigated gene expression during polymicrobial septic peritonitis by microarray analysis. Comparison of gene expression profiles for spleens and livers from septic wild-type and MyD88-deficient mice revealed striking organ-specific differences. Whereas MyD88 deficiency strongly reduced sepsis-induced gene expression in the liver, gene expression in the spleen was largely independent of MyD88, indicating organ-specific transcriptional regulation during polymicrobial sepsis. In addition to genes regulated by MyD88 in an organ-dependent manner, we also identified genes that exhibited an organ-independent influence of MyD88 and mostly encoded cytokines and chemokines. Notably, the expression of interferon (IFN)-regulated genes was markedly increased in septic MyD88-deficient mice compared to that in septic wild-type controls. Expression of IFN-regulated genes was dependent on the adapter protein TRIF. These results suggest that the influence of MyD88 on gene expression during sepsis strongly depends on the organ compartment affected by inflammation and that the lack of MyD88 may lead to disbalance of the expression of IFN-regulated genes.


2020 ◽  
Author(s):  
Ning Zhang ◽  
Marina A Pombo ◽  
Hernan G Rosli ◽  
Gregory B Martin

Wall-associated kinases (Waks) are known to be important components of plant immunity against various pathogens including Pseudomonas syringae pv. tomato (Pst) although their molecular mechanisms are largely unknown. In tomato, SlWak1 has been implicated in immunity because its transcript abundance increases significantly in leaves after treatment with the flagellin-derived peptides flg22 and flgII-28, which activate the receptors Fls2 and Fls3, respectively. We generated two SlWak1 tomato mutants (Δwak1) using CRISPR/Cas9 and investigated the role of SlWak1 in tomato-Pst interactions. PTI activated in the apoplast by flg22 or flgII-28 was compromised in Δwak1 plants but PTI at the leaf surface was unaffected. The Δwak1 plants developed fewer callose deposits than wild-type plants but retained the ability to generate reactive oxygen species and activate MAPKs in response to flg22 and flgII-28. The induction of Wak1 gene expression by flg22 and flgII-28 was greatly reduced in a tomato mutant lacking Fls2 and Fls3 but induction of Fls3 gene expression by flgII-28 was unaffected in Δwak1 plants. After Pst inoculation, Δwak1 plants developed disease symptoms more slowly than Δfls2.1/fls2.2/fls3 mutant plants, although both plants ultimately were similarly susceptible. SlWak1 co-immunoprecipitated with both Fls2 and Fls3 independently of flg22/flgII-28 or Bak1. These observations suggest that SlWak1 acts in a complex with Fls2/Fls3 and plays an important role at later stages of the PTI in the apoplast.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anastasia Ricci ◽  
Sara Orazi ◽  
Federica Biancucci ◽  
Mauro Magnani ◽  
Michele Menotta

AbstractAtaxia telangiectasia (AT) is a rare genetic neurodegenerative disease. To date, there is no available cure for the illness, but the use of glucocorticoids has been shown to alleviate the neurological symptoms associated with AT. While studying the effects of dexamethasone (dex) in AT fibroblasts, by chance we observed that the nucleoplasmic Lamin A/C was affected by the drug. In addition to the structural roles of A-type lamins, Lamin A/C has been shown to play a role in the regulation of gene expression and cell cycle progression, and alterations in the LMNA gene is cause of human diseases called laminopathies. Dex was found to improve the nucleoplasmic accumulation of soluble Lamin A/C and was capable of managing the large chromatin Lamin A/C scaffolds contained complex, thus regulating epigenetics in treated cells. In addition, dex modified the interactions of Lamin A/C with its direct partners lamin associated polypeptide (LAP) 2a, Retinoblastoma 1 (pRB) and E2F Transcription Factor 1 (E2F1), regulating local gene expression dependent on E2F1. These effects were differentially observed in both AT and wild type (WT) cells. To our knowledge, this is the first reported evidence of the role of dex in Lamin A/C dynamics in AT cells, and may represent a new area of research regarding the effects of glucocorticoids on AT. Moreover, future investigations could also be extended to healthy subjects or to other pathologies such as laminopathies since glucocorticoids may have other important effects in these contexts as well.


1991 ◽  
Vol 11 (1) ◽  
pp. 47-54
Author(s):  
H Chan ◽  
S Hartung ◽  
M Breindl

We have studied the role of DNA methylation in repression of the murine alpha 1 type I collagen (COL1A1) gene in Mov13 fibroblasts. In Mov13 mice, a retroviral provirus has inserted into the first intron of the COL1A1 gene and blocks its expression at the level of transcriptional initiation. We found that regulatory sequences in the COL1A1 promoter region that are involved in the tissue-specific regulation of the gene are unmethylated in collagen-expressing wild-type fibroblasts and methylated in Mov13 fibroblasts, confirming and extending earlier observations. To directly assess the role of DNA methylation in the repression of COL1A1 gene transcription, we treated Mov13 fibroblasts with the demethylating agent 5-azacytidine. This treatment resulted in a demethylation of the COL1A1 regulatory sequences but failed to activate transcription of the COL1A1 gene. Moreover, the 5-azacytidine treatment induced a transcription-competent chromatin structure in the retroviral sequences but not in the COL1A1 promoter. In DNA transfection and microinjection experiments, we found that the provirus interfered with transcriptional activity of the COL1A1 promoter in Mov13 fibroblasts but not in Xenopus laevis oocytes. In contrast, the wild-type COL1A1 promoter was transcriptionally active in Mov13 fibroblasts. These experiments showed that the COL1A1 promoter is potentially transcriptionally active in the presence of proviral sequences and that Mov13 fibroblasts contain the trans-acting factors required for efficient COL1A1 gene expression. Our results indicate that the provirus insertion in Mov13 can inactivate COL1A1 gene expression at several levels. It prevents the developmentally regulated establishment of a transcription-competent methylation pattern and chromatin structure of the COL1A1 domain and, in the absence of DNA methylation, appears to suppress the COL1A1 promoter in a cell-specific manner, presumably by assuming a dominant chromatin structure that may be incompatible with transcriptional activity of flanking cellular sequences.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1734-1734
Author(s):  
Orit Uziel ◽  
Zinab Sarsur- Amer ◽  
Einat Beery ◽  
Pia Raanani ◽  
Uri Rozovski

Studies from recent years unraveled the role of monocytes and T-cells in the pathogenesis of chronic lymphocytic leukemia (CLL). The role of other immune cells in the pathobiology of CLL is less known. Specifically, whether B-cells, the normal counterpart of CLL cells play a role in CLL is unknown. Nevertheless, since both CLL cells and wild type B-cells reside in lymphatic organs and travel in blood, they either share or compete over common environmental resources. According to the cell competition theory, a sensing mechanism measures the relative fitness of a cell and ensures the elimination of cells deemed to be less fit then their neighbors. Since constitutive activation of intracellular pathways protect CLL cells from apoptosis, the cell competition theory predicts that compared with normal B-cells these cells are sensed as "super fit" and B-cells, the less fit counterparts, are eliminated. Yet, what delivers this massage across a population of cells is unknown. Exosomes are nanosized particles that are secreted by various types of cells. Exosomes carry a cargo of proteins and different types of RNA. They travel in body fluids and are taken up by cells in their vicinity. Since cancer cells including CLL cells secrete exosomes, we have formulated our hypothesis, namely, that exosomes derived from CLL cells are the vehicles that carry a death massage to wild type B-cells. To test this hypothesis, we isolated CLL cells from 3 previously untreated patients with CLL. We then grew these cells in exosome free media for 72 hours and harvested the exosomes by ultracentrifugation. We used NanoSight tracking analysis, Western immunoblotting for CD63, a common exosomal marker, and electron microscopy imaging studies to ensure that our pellet include the typical 100nm exosomal particles. Subsequently, we subjected normal B-cells derived from healthy volunteers to CLL derived exosomes stained by FM-143 dye. Using flow cytometry we found that exosomes are taken up by normal B-cells in a dose- and time- dependent manner. Double staining of the recipient B-cells to Annexin/PI revealed that exosomes induce apoptosis of these cells in a dose- and time- dependent manner. We then used RNA-seq to trace the changes in the molecular makeup of B-cells after exosomal uptake?? they took up exosomes. We found 24 transcripts that were differentially expressed (11 that were upregulated and 13 that were downregulated). We then verified the array results by quantitative real-time PCR for four of these genes. Among the top transcripts that were upregulated in exosome-positive B-cells is SMAD6. Because the upregulation of the SMAD family members including SMAD6 is associated with the induction of apoptosis in various malignant and non-malignant cells we wondered whether the upregulation of SMAD6 also induces apoptosis in normal B-cells. To test this, we transfected normal B-cells with SMAD6 containing vector and verified by RT-PCR that level of SMAD6 transcript were upregulated and by Western immunoblotting that levels of SMAD6 protein are upregulated as well. As expected, the rate of apoptosis was higher, and the rates of viable cells and proliferating cells were significantly lower in SMAD6-transfected B-cells. Taken together, we show here that CLL cells secrete exosomes that function as "Trojan horses". Once they are taken up by normal B-cells they induce SMAD6-dependent apoptosis. In this way the neoplastic cells may actively eliminate their competitors and take over the common environmental resources. Disclosures No relevant conflicts of interest to declare.


Cartilage ◽  
2020 ◽  
pp. 194760352095814
Author(s):  
Austin V. Stone ◽  
Richard F. Loeser ◽  
Michael F. Callahan ◽  
Margaret A. McNulty ◽  
David L. Long ◽  
...  

Objective Meniscus injury and the hypoxia-inducible factor (HIF) pathway are independently linked to osteoarthritis pathogenesis, but the role of the meniscus HIF pathway remains unclear. We sought to identify and evaluate HIF pathway response in normal and osteoarthritic meniscus and to examine the effects of Epas1 (HIF-2α) insufficiency in mice on early osteoarthritis development. Methods Normal and osteoarthritic human meniscus specimens were obtained and used for immunohistochemical evaluation and cell culture studies for the HIF pathway. Meniscus cells were treated with pro-inflammatory stimuli, including interleukins (IL)-1β, IL-6, transforming growth factor (TGF)-α, and fibronectin fragments (FnF). Target genes were also evaluated with HIF-1α and HIF-2α (Epas1) overexpression and knockdown. Wild-type ( n = 36) and Epas1+/− ( n = 30) heterozygous mice underwent destabilization of the medial meniscus (DMM) surgery and were evaluated at 2 and 4 weeks postoperatively for osteoarthritis development using histology. Results HIF-1α and HIF-2α immunostaining and gene expression did not differ between normal and osteoarthritic meniscus. While pro-inflammatory stimulation significantly increased both catabolic and anabolic gene expression in the meniscus, HIF-1α and Epas1 expression levels were not significantly altered. Epas1 overexpression significantly increased Col2a1 expression. Both wild-type and Epas1+/− mice developed osteoarthritis following DMM surgery. There were no significant differences between genotypes at either time point. Conclusion The HIF pathway is likely not responsible for osteoarthritic changes in the human meniscus. Additionally, Epas1 insufficiency does not protect against osteoarthritis development in the mouse at early time points after DMM surgery. The HIF pathway may be more important for protection against catabolic stress.


2019 ◽  
Vol 317 (1) ◽  
pp. H168-H180 ◽  
Author(s):  
Ali M. Tabish ◽  
Mohammed Arif ◽  
Taejeong Song ◽  
Zaher Elbeck ◽  
Richard C. Becker ◽  
...  

In this study, we investigated the role of DNA methylation [5-methylcytosine (5mC)] and 5-hydroxymethylcytosine (5hmC), epigenetic modifications that regulate gene activity, in dilated cardiomyopathy (DCM). A MYBPC3 mutant mouse model of DCM was compared with wild type and used to profile genomic 5mC and 5hmC changes by Chip-seq, and gene expression levels were analyzed by RNA-seq. Both 5mC-altered genes (957) and 5hmC-altered genes (2,022) were identified in DCM hearts. Diverse gene ontology and KEGG pathways were enriched for DCM phenotypes, such as inflammation, tissue fibrosis, cell death, cardiac remodeling, cardiomyocyte growth, and differentiation, as well as sarcomere structure. Hierarchical clustering of mapped genes affected by 5mC and 5hmC clearly differentiated DCM from wild-type phenotype. Based on these data, we propose that genomewide 5mC and 5hmC contents may play a major role in DCM pathogenesis. NEW & NOTEWORTHY Our data demonstrate that development of dilated cardiomyopathy in mice is associated with significant epigenetic changes, specifically in intronic regions, which, when combined with gene expression profiling data, highlight key signaling pathways involved in pathological cardiac remodeling and heart contractile dysfunction.


Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2172-2180 ◽  
Author(s):  
Kotaro Suzuki ◽  
Hiroshi Nakajima ◽  
Norihiko Watanabe ◽  
Shin-ichiro Kagami ◽  
Akira Suto ◽  
...  

Abstract The regulatory roles of the common cytokine receptor γ chain (γc)– and Jak3-dependent signaling in the proliferation and survival of mast cells were determined using γc-deficient (γc−) and Jak3-deficient (Jak3−) mice. Although the mast cells in γc− and Jak3− mice were morphologically indistinguishable from those in wild-type mice, the number of peritoneal mast cells was decreased in γc− and Jak3− mice as compared with that in wild-type mice. Among γc-related cytokines, interleukin (IL)-4 and IL-9, but not IL-2, IL-7, or IL-15, enhanced the proliferation and survival of bone marrow–derived mast cells (BMMCs) from wild-type mice. However, the effects of IL-4 and IL-9 were absent in BMMCs from γc− and Jak3−mice. In addition, IL-4Rα, γc, and Jak3, but not IL-2Rβ or IL-7Rα, were expressed in BMMCs. In contrast, IL-13 did not significantly induce the proliferation and survival of BMMCs even from wild-type mice, and IL-13Rα1 was not expressed in BMMCs. Furthermore, IL-4 phosphorylated the 65-kd isoform of Stat6 in BMMCs from wild-type mice but not from γc− and Jak3− mice. These results indicate that γc- and Jak3-dependent signaling is essential for IL-4– and IL-9–induced proliferation and survival of murine mast cells, that the effects of IL-4 are mediated by type I IL-4R and that type II IL-4R is absent on mast cells, and that IL-4 phosphorylates the 65-kd isoform of Stat6 in mast cells in a γc- and Jak3-dependent manner.


1999 ◽  
Vol 145 (5) ◽  
pp. 961-972 ◽  
Author(s):  
Alessio Merlin ◽  
Wolfgang Voos ◽  
Ammy C. Maarse ◽  
Michiel Meijer ◽  
Nikolaus Pfanner ◽  
...  

Tim44 is a protein of the mitochondrial inner membrane and serves as an adaptor protein for mtHsp70 that drives the import of preproteins in an ATP-dependent manner. In this study we have modified the interaction of Tim44 with mtHsp70 and characterized the consequences for protein translocation. By deletion of an 18-residue segment of Tim44 with limited similarity to J-proteins, the binding of Tim44 to mtHsp70 was weakened. We found that in the yeast Saccharomyces cerevisiae the deletion of this segment is lethal. To investigate the role of the 18-residue segment, we expressed Tim44Δ18 in addition to the endogenous wild-type Tim44. Tim44Δ18 is correctly targeted to mitochondria and assembles in the inner membrane import site. The coexpression of Tim44Δ18 together with wild-type Tim44, however, does not stimulate protein import, but reduces its efficiency. In particular, the promotion of unfolding of preproteins during translocation is inhibited. mtHsp70 is still able to bind to Tim44Δ18 in an ATP-regulated manner, but the efficiency of interaction is reduced. These results suggest that the J-related segment of Tim44 is needed for productive interaction with mtHsp70. The efficient cooperation of mtHsp70 with Tim44 facilitates the translocation of loosely folded preproteins and plays a crucial role in the import of preproteins which contain a tightly folded domain.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 691-691
Author(s):  
Joerg Schuettrumpf ◽  
Jianxiang Zou ◽  
Shin Jen Tai ◽  
Alexander Schlachterman ◽  
Kian Tian ◽  
...  

Abstract Coagulation proteases are crucial for hemostasis and have also been implicated in inflammatory responses, blood vessel formation, and tumor cell metastasis. Cellular responses triggered by proteases are mediated by protease-activated receptors (PAR). Adeno-associated virus (AAV)-2 vectors hold promise for the treatment of several diseases and were already tested in Phase I studies for hemophilia B following intramuscular or hepatic artery deliveries. Previously, we determined an unexpected inhibitory effect (60–70% downregulation) on AAV-2 and adenovirus mediated gene transfer by thrombin- or FXa inhibitors. These results were independent of mouse strain, transgene product, or vector promoter, and gene expression by vectors of alternate serotypes AAV-5 or -8, which do not share cellular receptors with AAV-2, were not affected by any drug. Here we present in vivo evidence of a novel role of coagulation proteases and PARs in modulating gene transfer by viral vectors. We tested AAV-2 gene transfer efficacy in (a) animal models for proteases deficiency [FX and FIX deficient animals], (b) PAR-1 or PAR-2 deficient mice, (c) and following in vivo activation of PARs. FX knockout mice with residual activity of only 1–3% of normal (n=9) were injected with AAV-2-human(h)FIX vector and compared to littermates with FX levels of 50% (n=4). FIX expression levels were 2-fold lower among FX-deficient mice compared to controls (p<0.03). The second model, FIX deficient mice, received AAV expressing α1-antitrypsin (AAT-1). Severe hemophilia B models due to large-gene deletion (n=5) or missense mutation (R180T) in the FIX gene (n=3, <1% FIX) were compared to littermate controls with normal FIX levels (n=6). The results showed that AAT-1 levels among hemophilia B mice were 2-fold lower than in controls (24 vs 48 ng/ml, p<0.05, respectively). Because PAR activation by thrombin enhances αVβ5 (co-receptor for AAV-2 and adenovirus)-dependent cellular function (JBC 276:10952) we hypothesized that PAR modulates AAV-2 gene transfer. Homozygous (−/−) or heterozygous deficient (+/−) PAR-1 (n=24) or PAR-2 (n=25) mice received AAV-2-hF.IX and were compared to littermate controls (+/+). FIX levels among PAR-1 controls (1.9 μg/ml) were comparable to levels obtained among heterozygotes but higher than in homozygotes (1.1 μg/ml, p<0.02). Similarly, PAR-2 deficient mice presented 2-fold lower FIX levels than controls (0.7 vs 1.3 μg/ml, p<0.02) whereas heterozygous mice presented intermediate levels. To further confirm the role of PARs in AAV-2 gene transfer we activated PARs prior to AAV-2 injection. C57BL/6 mice received specific peptide agonists at doses ranging from 10 to 60 μM/kg (n=4 per dose and per peptide) and were compared to controls receiving scramble peptide. FIX levels increased 1.5 to 5-fold in a dose-dependent manner and the activation of PAR-1 and -2 simultaneously was superior to single peptide. Gene copy monitoring revealed low vector uptake by livers of PAR knockout mice while activation of PARs increased uptake. In conclusion, these data demonstrated a novel in vivo role of coagulation proteases and PARs on viral vectors (AAV-2 and adenovirus)-mediated gene expression and provide an alternative target to modulate gene therapy strategies.


Sign in / Sign up

Export Citation Format

Share Document