scholarly journals Adenosine 5′-Monophosphate-Activated Protein Kinase-Mammalian Target of Rapamycin Cross Talk Regulates Brown Adipocyte Differentiation

Endocrinology ◽  
2010 ◽  
Vol 151 (3) ◽  
pp. 980-992 ◽  
Author(s):  
Rocio Vila-Bedmar ◽  
Margarita Lorenzo ◽  
Sonia Fernández-Veledo

Brown adipose tissue (BAT) is considered of metabolic significance in mammalian physiology, because it plays an important role in regulating energy balance. Alterations in this tissue have been associated with obesity and type 2 diabetes. The molecular mechanisms modulating brown adipocyte differentiation are not fully understood. Using a murine brown preadipocyte cell line, primary cultures, and 3T3-L1 cells, we analyzed the contribution of various intracellular signaling pathways to adipogenic and thermogenic programs. Sequential activation of p38MAPK and LKB1-AMPK-tuberous sclerosis complex 2 (TSC2) as well as significant attenuation of ERK1/2 and mammalian target of rapamycin (mTOR)-p70 S6 kinase 1 (p70S6K1) activation was observed through the brown differentiation process. This study demonstrates a critical role for AMPK in controlling the mTOR-p70S6K1 signaling cascade in brown but not in 3T3-L1 adipocytes. We observed that mTOR activity is essential in the first stages of differentiation. Nevertheless, subsequent inhibition of this cascade by AMPK activation is also necessary at later stages. An in vivo study showed that prolonged 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)-induced AMPK activation increases uncoupling protein 1 expression and induces an accumulation of brown adipocytes in white adipose tissue (WAT), as revealed by immunohistology. Moreover, the induction of brown adipogenesis in areas of white fat partially correlates with the body weight reduction detected in response to treatment with AICAR. Taken together, our study reveals that differentiation of brown adipocytes employs different signaling pathways from white adipocytes, with AMPK-mTOR cross talk a central mediator of this process. Promotion of BAT development in WAT by pharmacological activation of AMPK may have potential in treating obesity by acting on energy dissipation.

1998 ◽  
Vol 331 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Josep A. VILLENA ◽  
Octavi VIÑAS ◽  
Teresa MAMPEL ◽  
Roser IGLESIAS ◽  
Marta GIRALT ◽  
...  

The regulation of transcription of the gene for the β subunit of the FoF1 ATP synthase (ATPsynβ) in brown adipose tissue has been studied as a model to determine the molecular mechanisms for mitochondrial biogenesis associated with brown adipocyte differentiation. The expression of the ATPsynβ mRNA is induced during the brown adipocyte differentiation that occurs during murine prenatal development or when brown adipocytes differentiate in culture. This induction occurs in parallel with enhanced gene expression for other nuclear and mitochondrially-encoded components of the respiratory chain/oxidative phosphorylation system (OXPHOS). Transient transfection assays indicated that the expression of the ATPsynβ gene promoter is higher in differentiated HIB-1B brown adipocytes than in non-differentiated HIB-1B cells. A major transcriptional regulatory site was identified between nt -306 and -266 in the ATPsynβ promoter. This element has a higher enhancer capacity in differentiated brown adipocyte HIB-1B cells than in non-differentiated cells. Electrophoretic shift analysis indicated that Sp1and nuclear respiratory factor-2/GA-binding protein (NRF2/GABP) were the main nuclear proteins present in brown adipose tissue that bind this site. Double-point mutant analysis indicated a major role for the NRF2/GABP site in the enhancer capacity of this element in brown fat cells. It is proposed that NRF2/GABP plays a pivotal role in the co-ordinated enhancement of OXPHOS gene expression associated with mitochondrial biogenesis in brown adipocyte differentiation.


Author(s):  
Junnosuke Mae ◽  
Kazuki Nagaya ◽  
Yuko Okamatsu-Ogura ◽  
Ayumi Tsubota ◽  
Shinya Matsuoka ◽  
...  

Brown adipose tissue (BAT) is a specialized tissue that regulates non-shivering thermogenesis. In Syrian hamsters, interscapular adipose tissue is composed primarily of white adipocytes at birth, which is converted to BAT through the proliferation and differentiation of brown adipocyte progenitors and the simultaneous disappearance of white adipocytes. In this study, we investigated the regulatory mechanism of brown adipogenesis during postnatal BAT formation in hamsters. Interscapular adipose tissue of a 10-day-old hamster, which primarily consists of brown adipocyte progenitors and white adipocytes, was digested with collagenase and fractioned into stromal–vascular (SV) cells and white adipocytes. SV cells spontaneously differentiated into brown adipocytes that contained multilocular lipid droplets and expressed uncoupling protein 1 (Ucp1), a marker of brown adipocytes, without treatment of adipogenic cocktail such as dexamethasone and insulin. The spontaneous differentiation of SV cells was suppressed by co-culture with adipocytes or by the addition of white adipocyte-conditioned medium. Conversely, the addition of SV cell-conditioned medium increased the expression of Ucp1. These results indicate that adipocytes secrete factors that suppress brown adipogenesis, whereas SV cells secrete factors that promote brown adipogenesis. Transcriptome analysis was conducted; however, no candidate suppressing factors secreted from adipocytes were identified. In contrast, 19 genes that encode secretory factors, including bone morphogenetic protein (BMP) family members, BMP3B, BMP5, and BMP7, were highly expressed in SV cells compared with adipocytes. Furthermore, the SMAD and MAPK signaling pathways, which represent the major BMP signaling pathways, were activated in SV cells, suggesting that BMPs secreted from SV cells induce brown adipogenesis in an autocrine manner through the SMAD/MAPK signaling pathways. Treatment of 5-day-old hamsters with type I BMP receptor inhibitor, LDN-193189, for 5 days reduced p38 MAPK phosphorylation and drastically suppressed BAT formation of interscapular adipose tissue. In conclusion, adipocytes and stromal cells regulate brown adipogenesis through secretory factors during the postnatal white-to-brown conversion of adipose tissue in Syrian hamsters.


2016 ◽  
Vol 36 (15) ◽  
pp. 2027-2038 ◽  
Author(s):  
Hongyi Zhou ◽  
Stephen M. Black ◽  
Tyler W. Benson ◽  
Neal L. Weintraub ◽  
Weiqin Chen

Brown adipose tissue (BAT) plays a unique role in regulating whole-body energy homeostasis by dissipating energy through thermogenic uncoupling. Berardinelli-Seip congenital lipodystrophy (BSCL) type 2 (BSCL2; also known as seipin) is a lipodystrophy-associated endoplasmic reticulum membrane protein essential for white adipocyte differentiation. Whether BSCL2 directly participates in brown adipocyte differentiation, development, and function, however, is unknown. We show that BSCL2 expression is increased during brown adipocyte differentiation. Its deletion does not impair the classic brown adipogenic program but rather induces premature activation of differentiating brown adipocytes through cyclic AMP (cAMP)/protein kinase A (PKA)-mediated lipolysis and fatty acid and glucose oxidation, as well as uncoupling. cAMP/PKA signaling is physiologically activated during neonatal BAT development in wild-type mice and greatly potentiated in mice with genetic deletion ofBscl2in brown progenitor cells, leading to reduced BAT mass and lipid content during neonatal brown fat formation. However, prolonged overactivation of cAMP/PKA signaling during BAT development ultimately causes apoptosis of brown adipocytes through inflammation, resulting in BAT atrophy and increased overall adiposity in adult mice. These findings reveal a key cell-autonomous role for BSCL2 in controlling BAT mass/activity and provide novel insights into therapeutic strategies targeting cAMP/PKA signaling to regulate brown adipocyte function, viability, and metabolic homeostasis.


Author(s):  
Jiajia Zhang ◽  
Ning Wu ◽  
Dayong Shi

Background: The mammalian target of rapamycin (mTOR), protein tyrosine phosphatase 1b (PTP1B) and dipeptidase 4 (DPP4) signaling pathways regulate eukaryotic cell proliferation and metabolism. Previous researches described different transduction mechanisms in the progression of cancer and diabetes. Methodology: We reviewed recent advances in the signal transduction pathways of mTOR, PTP1B and DPP4 regulation and determined the crosstalk and common pathway in diabetes and cancer. Results: We showed that according to numerous past studies, the proteins participate in the signaling networks for both diseases. Conclusion: There are common pathways and specific proteins involved in diabetes and cancer. This article demonstrates and explains the potential mechanisms of association and future prospects for targeting these proteins in pharmacological studies.


2002 ◽  
Vol 282 (1) ◽  
pp. C105-C112 ◽  
Author(s):  
Bibian García ◽  
Maria-Jesús Obregón

To study the effect of the mitogens epidermal growth factor (EGF), acidic and basic fibroblast growth factors (aFGF and bFGF), and vasopressin on brown adipocyte differentiation, we analyzed the expression of uncoupling protein-1 (UCP-1) mRNA. Quiescent brown preadipocytes express high levels of UCP-1 mRNA in response to triiodothyronine (T3) and norepinephrine (NE). The addition of serum or the mitogenic condition aFGF + vasopressin + NE or EGF + vasopressin + NE decreases UCP-1 mRNA. A second addition of mitogens further decreases UCP-1 mRNA. Treatment with aFGF or bFGF alone increases UCP-1 mRNA, whereas the addition of EGF or vasopressin dramatically reduces UCP-1 mRNA levels. The continuous presence of T3 increases UCP-1 mRNA levels in cells treated with EGF, aFGF, or bFGF. The effect of T3 on the stimulation of DNA synthesis also was tested. T3 inhibits the mitogenic activity of aFGF and bFGF. In conclusion, mitogens like aFGF or bFGF allow brown adipocyte differentiation, whereas EGF and vasopressin inhibit the differentiation process. T3 behaves as an important hormone that regulates both brown adipocyte proliferation and differentiation.


2005 ◽  
Vol 98 (5) ◽  
pp. 1900-1908 ◽  
Author(s):  
James G. Tidball

The adaptability of skeletal muscle to changes in the mechanical environment has been well characterized at the tissue and system levels, but the mechanisms through which mechanical signals are transduced to chemical signals that influence muscle growth and metabolism remain largely unidentified. However, several findings have suggested that mechanical signal transduction in muscle may occur through signaling pathways that are shared with insulin-like growth factor (IGF)-I. The involvement of IGF-I-mediated signaling for mechanical signal transduction in muscle was originally suggested by the observations that muscle releases IGF-I on mechanical stimulation, that IGF-I is a potent agent for promoting muscle growth and affecting phenotype, and that IGF-I can function as an autocrine hormone in muscle. Accumulating evidence shows that at least two signaling pathways downstream of IGF-I binding can influence muscle growth and adaptation. Signaling via the calcineurin/nuclear factor of activated T-cell pathway has been shown to have a powerful influence on promoting the slow/type I phenotype in muscle but can also increase muscle mass. Neural stimulation of muscle can activate this pathway, although whether neural activation of the pathway can occur independent of mechanical activation or independent of IGF-I-mediated signaling remains to be explored. Signaling via the Akt/mammalian target of rapamycin pathway can also increase muscle growth, and recent findings show that activation of this pathway can occur as a response to mechanical stimulation applied directly to muscle cells, independent of signals derived from other cells. In addition, mechanical activation of mammalian target of rapamycin, Akt, and other downstream signals is apparently independent of autocrine factors, which suggests that activation of the mechanical pathway occurs independent of muscle-mediated IGF-I release.


Rare Tumors ◽  
2009 ◽  
Vol 1 (2) ◽  
pp. 164-166
Author(s):  
Jigarkumar Parikh ◽  
Teresa Coleman ◽  
Nidia Messias ◽  
James Brown

Xp11.2 translocation renal cell carcinomas (TRCCs) are a rare family of tumors newly recognized by the World Health Organization (WHO) in 2004. These tumors result in the fusion of partner genes to the TFE3 gene located on Xp11.2. They are most common in the pediatric population, but have been recently implicated in adult renal cell carcinoma (RCC) presenting at an early age. TFE3-mediated direct transcriptional upregulation of the Met tyrosine kinase receptor triggers dramatic activation of downstream signaling pathways including the protein kinase B (Akt)/phosphatidylinositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) pathways. Temsirolimus is an inhibitor of mammalian target of rapamycin (mTOR) kinase, a component of intracellular signaling pathways involved in the growth and proliferation of malignant cells. Here we present a case of a 22-year old female who has been treated with temsirolimus for her Xp11.2/ TFE3 gene fusion RCC.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Daisuke Irie ◽  
Hiroyuki Yamada ◽  
Taku Kato ◽  
Hiroyuki Kawahito ◽  
Kouji Ikeda ◽  
...  

[BACKGROUND] The angiotensin II type 1 (AT1) receptor in visceral white adipose tissue (WAT) is closely implicated in lipid metabolism and energy homeostasis. Recently, perivascular adipose tissue (PVAT) has been shown to play a crucial role in the development of atherosclerosis; however, the effects of AT1 on PVAT properties and their functional relevance in atherogenesis remain undefined. [METHOD AND RESULT] We examined the fat depot-specific difference of adipose tissue among epididymal WAT, PVAT surrounding thoracic aorta, and interscapular brown adipose tissue (BAT) in 8-week-old apoE deficient (apoE-/-) mice. The expression levels of brown adipocyte marker genes (UCP-1, PGC-1α, Elovl3, PPARα, and Cidea) were significantly higher in BAT and PVAT compared with WAT (P<0.01). White adipocyte marker genes (Igfbp3, DPT, Tcf21, and Hoxc9), which were hardly expressed in BAT, showed a moderate expression levels in PVAT, suggesting that PVAT has a strikingly different phenotype from the classical WAT and BAT. We next examined the properties of PVAT in 8-week-old apoE-/-/AT1 receptor deficient (Agtr1-/-) mice. After 4 weeks of western diet, the expression levels of adipocyte differentiation maker genes (PPARγ, FABP4, c/EBPα) were markedly increased in apoE -/- PVAT (P<0.05), which was completely diminished in apoE-/-/Agtr1 -/- PVAT (P<0.01). To investigate the effect of AT1 on the periaortic adipocyte differentiation, we performed primary culture of preadipocyte from stromal vascular fraction in Agtr1 -/- and Agtr1+/+ PVAT. The mRNA expressions of adipocyte differentiation marker genes (PPARγ, FABP4, and c/EBPα) were time-dependently increased in Agtr1+/+ adipocyte. In contrast, FABP4 and c/EBPα mRNA expressions were markedly inhibited in Agtr1 -/- adipocyte, whereas PPARγ did not differ between the two groups during differentiation, suggesting that AT1 is essentially implicated in the terminal differentiation of periaortic adipocyte. [CONCLUSION] Our findings demonstrate that AT1 regulates the expression levels of late stage of adipocyte-differentiation marker genes in PVAT, suggesting that AT1-mediated modulation of periaortic adipocyte differentiation could be a novel therapeutic target for the prevention of atherosclerosis.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1639-1639
Author(s):  
Katie Graham ◽  
Yang Yang ◽  
Ahmed Bettaieb ◽  
Ling Zhao

Abstract Objectives Brown adipocytes have emerged as novel targets for obesity treatment and prevention. Cytochrome P450 (CYP) epoxygenases, primarily CYP2J and CYP2C isoforms, produce epoxy fatty acids (EpFAs), which have been suggested to play important roles in the regulation of white adipogenesis and obesity. However, the roles of CYP epoxygenases in brown adipogenesis remain unexplored. In this study, we sought to characterize mRNA expression patterns of Cyp2j and 2c subfamily members during adipogenesis of human and murine brown adipocytes and in obese mice and investigate the impact of modulating the expression of Cyp2j13 on brown adipogenesis. Methods The mRNA expression of various Cyp2j and Cyp2c isoforms were examined throughout murine and human brown adipocyte differentiation and in the brown adipose tissue (BAT) of diet-induced obese and control mice. To induce epoxygenase overexpression, stable transfection of murine brown preadipocytes with either Cyp2j13 or a vector control was performed. Protein and mRNA expression of Cyp2j13 and brown marker genes were analyzed. Results Expression of murine Cyp2j isoforms Cyp2j6, Cyp2j8, Cyp2j9, and Cyp2j13, and the human isoform CYP2J2 consistently decreased throughout brown adipocyte differentiation, while expression of Cyp2c isoforms did not elicit consistent patterns. Moreover, Cyp2j expression in BAT was enhanced in diet-induced obese mice compared to the controls. Due to its high relative abundance and significance, Cyp2j13 was selected for further investigation. Overexpression of Cyp2j13 significantly suppressed murine brown adipocyte differentiation as evaluated by lipid accumulation and brown marker gene UCP1 expression. Conclusions Our results suggest that CYP epoxygenases may play important roles in brown adipogenesis. Cyp2j13, in particular, may be a novel target for brown adipogenesis, and consequently, for obesity treatment and prevention. Further studies using CYP2J inhibitors and Cyp2j13 knockdown are warranted. Funding Sources The work was supported by NIH 1R15DK114790–01A1 (to L.Z.), K99DK100736 and R00DK100736 (to A.B.).


Endocrinology ◽  
2012 ◽  
Vol 153 (4) ◽  
pp. 1706-1716 ◽  
Author(s):  
Fen Xu ◽  
David Burk ◽  
Zhanguo Gao ◽  
Jun Yin ◽  
Xia Zhang ◽  
...  

The histone deacetylase sirtuin 1 (SIRT1) inhibits adipocyte differentiation and suppresses inflammation by targeting the transcription factors peroxisome proliferator-activated receptor γ and nuclear factor κB. Although this suggests that adiposity and inflammation should be enhanced when SIRT1 activity is inactivated in the body, this hypothesis has not been tested in SIRT1 null (SIRT1−/−) mice. In this study, we addressed this issue by investigating the adipose tissue in SIRT1−/− mice. Compared with their wild-type littermates, SIRT1 null mice exhibited a significant reduction in body weight. In adipose tissue, the average size of adipocytes was smaller, the content of extracellular matrix was lower, adiponectin and leptin were expressed at 60% of normal level, and adipocyte differentiation was reduced. All of these changes were observed with a 50% reduction in capillary density that was determined using a three-dimensional imaging technique. Except for vascular endothelial growth factor, the expression of several angiogenic factors (Pdgf, Hgf, endothelin, apelin, and Tgf-β) was reduced by about 50%. Macrophage infiltration and inflammatory cytokine expression were 70% less in the adipose tissue of null mice and macrophage differentiation was significantly inhibited in SIRT1−/− mouse embryonic fibroblasts in vitro. In wild-type mice, macrophage deletion led to a reduction in vascular density. These data suggest that SIRT1 controls adipose tissue function through regulation of angiogenesis, whose deficiency is associated with macrophage malfunction in SIRT1−/− mice. The study supports the concept that inflammation regulates angiogenesis in the adipose tissue.


Sign in / Sign up

Export Citation Format

Share Document