scholarly journals The Cyclic Pentapeptide d-Arg3FC131, a CXCR4 Antagonist, Induces Apoptosis of Somatotrope Tumor and Inhibits Tumor Growth in Nude Mice

Endocrinology ◽  
2010 ◽  
Vol 152 (2) ◽  
pp. 536-544 ◽  
Author(s):  
Jeong Mo Kim ◽  
Yong-ho Lee ◽  
Cheol Ryong Ku ◽  
Eun Jig Lee

Abstract The interaction between the chemokine stromal cell-derived factor 1 and its receptor CXCR4 plays an important role in GH production and cell proliferation in normal and tumorous pituitary somatotrope cells. Therefore, the chemokine receptor CXCR4 could be an attractive target for antitumor drugs in patients with acromegaly. A synthetic antagonist of CXCR4, cyclic pentapeptide d-Arg3FC131 (c[Gly1-d-Tyr2-d-Arg3-Arg4-Nal5]) significantly inhibited GH production and proliferation of GH3 somatotrope tumor cells in vitro. It also induced apoptosis of GH3 cells through activation of the caspase-3 pathway. Systemic administration of d-Arg3FC131 inhibited the growth of GH3 cell xenografts in immunodeficient nude mice by inducing apoptosis and suppressing the proliferation of tumor cells. These results indicate that d-Arg3FC131 might have potential for the treatment of pituitary tumors producing excess GH in patients with acromegaly.

2020 ◽  
Vol 105 (11) ◽  
Author(s):  
Moitza Principe ◽  
Marie Chanal ◽  
Mirela Diana Ilie ◽  
Audrey Ziverec ◽  
Alexandre Vasiljevic ◽  
...  

Abstract Purpose Pituitary neuroendocrine tumors (PitNETs) are frequent intracranial neoplasms that present heterogenic characteristics. Little is known about the immune cell network that exists in PitNETs and its contribution to their aggressive behavior. Methods Here we combined flow cytometry, t-SNE analysis, and histological approaches to define the immune landscape of surgically resected PitNETs. Xenografts of rodent pituitary tumor cells and resected PitNETs were performed in Rag2KO mice, in combination with in vitro analysis aimed at dissecting the role of pituitary tumor-cells in monocyte recruitment. Results We report that gonadotroph PitNETs present an increased CD68+ macrophage signature compared to somatotroph, lactotroph, and corticotroph PitNETs. Transcriptomic and histological characterizations confirmed gonadotroph infiltrating macrophages expressed CD163, MRC-1, ARG1, and CSF1R M2 macrophage markers. Use of growth hormone (GH)3/GH4 somatotroph and LβT2/αT3.1 gonadotroph cells drove THP1 macrophage migration through respective expression of CCL5 or CSF1. Although both LβT2 and GH3 cells recruited F4/80 macrophages following their engraftment in mice, only LβT2 gonadotroph cells showed a capacity for M2-like polarization. Similar observations were performed on patient-derived xenografts from somatotroph and gonadotroph tumors. Analysis of clinical data further demonstrated a significant correlation between the percentage of CD68+ and CD163+ infiltrating macrophages and the invasive character of gonadotroph tumors. Conclusions Gonadotroph tumor drive the recruitment of macrophages and their subsequent polarization to an M2-like phenotype. More importantly, the association between infiltrating CD68+/CD163+ macrophages and the invasiveness of gonadotroph tumors points to macrophage-targeted immunotherapies being a potent strategy to limit the progression of gonadotroph PitNETs.


2019 ◽  
Vol 26 (1) ◽  
pp. 13-29 ◽  
Author(s):  
Lautaro Zubeldía-Brenner ◽  
Catalina De Winne ◽  
Sofía Perrone ◽  
Santiago A Rodríguez-Seguí ◽  
Christophe Willems ◽  
...  

Preclinical and clinical studies support that Notch signaling may play an important oncogenic role in cancer, but there is scarce information for pituitary tumors. We therefore undertook a functional study to evaluate Notch participation in pituitary adenoma growth. Tumors generated in Nude mice by subcutaneous GH3 somatolactotrope cell injection were treated in vivo with DAPT, a γ-secretase inhibitor, thus inactivating Notch signaling. This treatment led to pituitary tumor reduction, lower prolactin and GH tumor content and a decrease in angiogenesis. Furthermore, in silico transcriptomic and epigenomic analyses uncovered several tumor suppressor genes related to Notch signaling in pituitary tissue, namely Btg2, Nr4a1, Men1, Zfp36 and Cnot1. Gene evaluation suggested that Btg2, Nr4a1 and Cnot1 may be possible players in GH3 xenograft growth. Btg2 mRNA expression was lower in GH3 tumors compared to the parental line, and DAPT increased its expression levels in the tumor in parallel with the inhibition of its volume. Cnot1 mRNA levels were also increased in the pituitary xenografts by DAPT treatment. And the Nr4a1 gene was lower in tumors compared to the parental line, though not modified by DAPT. Finally, because DAPT in vivo may also be acting on tumor microenvironment, we determined the direct effect of DAPT on GH3 cells in vitro. We found that DAPT decreases the proliferative, secretory and migration potential of GH3 cells. These results position selective interruption of Notch signaling as a potential therapeutic tool in adjuvant treatments for aggressive or resistant pituitary tumors.


2000 ◽  
Vol 11 (3) ◽  
pp. 929-939 ◽  
Author(s):  
Seunghyi Kook ◽  
Sang Ryeol Shim ◽  
Soo Jeon Choi ◽  
Joohong Ahnn ◽  
Jae Il Kim ◽  
...  

Apoptosis causes characteristic morphological changes in cells, including membrane blebbing, cell detachment from the extracellular matrix, and loss of cell–cell contacts. We investigated the changes in focal adhesion proteins during etoposide-induced apoptosis in Rat-1 cells and found that during apoptosis, p130cas (Crk-associated substrate [Cas]) is cleaved by caspase-3. Sequence analysis showed that Cas contains 10 DXXD consensus sites preferred by caspase-3. We identified two of these sites (DVPD416G and DSPD748G) in vitro, and point mutations substituting the Asp of DVPD416G and DSPD748G with Glu blocked caspase-3-mediated cleavage. Cleavage at DVPD416G generated a 74-kDa fragment, which was in turn cleaved at DSPD748G, yielding 47- and 31-kDa fragments. Immunofluorescence microscopy revealed well-developed focal adhesion sites in control cells that dramatically declined in number in etoposide-treated cells. Cas cleavage correlated temporally with the onset of apoptosis and coincided with the loss of p125FAK (focal adhesion kinase [FAK]) from focal adhesion sites and the attenuation of Cas–paxillin interactions. Considering that Cas associates with FAK, paxillin, and other molecules involved in the integrin signaling pathway, these results suggest that caspase-mediated cleavage of Cas contributes to the disassembly of focal adhesion complexes and interrupts survival signals from the extracellular matrix.


2018 ◽  
Vol 50 (5) ◽  
pp. 1804-1814 ◽  
Author(s):  
Ni Wang ◽  
Xiaohua Liang ◽  
Weijian Yu ◽  
Shihang Zhou ◽  
Meiyun  Fang

Background/Aims: MiR-19b has been reported to be involved in several malignancies, but its role in multiple myeloma (MM) is still unknown. The objective of this study was to explore the biological mechanism of miR-19b in the progression of MM. Methods: First, we performed real-time polymerase chain reaction (PCR) and Western blot to study the expression of miR-19b, tuberous sclerosis 1 (TSC1), and caspase-3 in different groups. MTT assay was performed to explore the effect of miR-19b on survival and apoptosis of cancer stem cells (CSCs). Computation analysis and luciferase assay were utilized to confirm the interaction between miR-19b and TSC1. Results: A total of 38 participants comprising 20 subjects with MM and 18 healthy subjects as normal controls were enrolled in our study. Real-time PCR showed dramatic upregulation of miR-19b, but TSC1 was evidently suppressed in the MM group. MiR-19b overexpression substantially promoted clonogenicity and cell viability, and further inhibited apoptosis of CSCs in vitro. Furthermore, miR-19b overexpression downregulated the expression of caspase-3, which induced apoptosis. Using in silico analysis, we identified that TSC1 might be a direct downstream target of miR-19b, and this was further confirmed by luciferase assay showing that miR-19b apparently reduced the luciferase activity of wild-type TSC1 3´-UTR, but not that of mutant TSC1 3´-UTR. There was also evident decrease in TSC1 mRNA and protein in CSCs following introduction of miR-19b. Interestingly, reintroduction of TSC1 abolished the miR-19b-induced proliferation promotion and apoptosis inhibition in CSCs. Conclusion: These findings collectively suggest that miR-19b promotes cell survival and suppresses apoptosis of MM CSCs via targeting TSC1 directly, indicating that miR-19b may serve as a potential and novel therapeutic target of MM based on miRNA expression.


2010 ◽  
Vol 11 (6) ◽  
pp. 2267-2280 ◽  
Author(s):  
Xiao-Dan Liu ◽  
Rui-Fang Fan ◽  
Yong Zhang ◽  
Hong-Zhi Yang ◽  
Zhi-Gang Fang ◽  
...  

2000 ◽  
Vol 192 (7) ◽  
pp. 1035-1046 ◽  
Author(s):  
Veronika Jesenberger ◽  
Katarzyna J. Procyk ◽  
Junying Yuan ◽  
Siegfried Reipert ◽  
Manuela Baccarini

The enterobacterial pathogen Salmonella induces phagocyte apoptosis in vitro and in vivo. These bacteria use a specialized type III secretion system to export a virulence factor, SipB, which directly activates the host's apoptotic machinery by targeting caspase-1. Caspase-1 is not involved in most apoptotic processes but plays a major role in cytokine maturation. We show that caspase-1–deficient macrophages undergo apoptosis within 4–6 h of infection with invasive bacteria. This process requires SipB, implying that this protein can initiate the apoptotic machinery by regulating components distinct from caspase-1. Invasive Salmonella typhimurium targets caspase-2 simultaneously with, but independently of, caspase-1. Besides caspase-2, the caspase-1–independent pathway involves the activation of caspase-3, -6, and -8 and the release of cytochrome c from mitochondria, none of which occurs during caspase-1–dependent apoptosis. By using caspase-2 knockout macrophages and chemical inhibition, we establish a role for caspase-2 in both caspase-1–dependent and –independent apoptosis. Particularly, activation of caspase-1 during fast Salmonella-induced apoptosis partially relies on caspase-2. The ability of Salmonella to induce caspase-1–independent macrophage apoptosis may play a role in situations in which activation of this protease is either prevented or uncoupled from the induction of apoptosis.


2005 ◽  
Vol 102 (6) ◽  
pp. 1147-1157 ◽  
Author(s):  
Torsten Loop ◽  
David Dovi-Akue ◽  
Michael Frick ◽  
Martin Roesslein ◽  
Lotti Egger ◽  
...  

Background Volatile anesthetics modulate lymphocyte function during surgery, and this compromises postoperative immune competence. The current work was undertaken to examine whether volatile anesthetics induce apoptosis in human T lymphocytes and what apoptotic signaling pathway might be used. Methods Effects of sevoflurane, isoflurane, and desflurane were studied in primary human CD3 T lymphocytes and Jurkat T cells in vitro. Apoptosis and mitochondrial membrane potential were assessed using flow cytometry after green fluorescent protein-annexin V and DiOC6-fluorochrome staining. Activity and proteolytic processing of caspase 3 was measured by cleaving of the fluorogenic effector caspase substrate Ac-DEVD-AMC and by anti-caspase-3 Western blotting. Release of mitochondrial cytochrome c was studied after cell fractionation using anti-cytochrome c Western blotting and enzyme-linked immunosorbent assays. Results Sevoflurane and isoflurane induced apoptosis in human T lymphocytes in a dose-dependent manner. By contrast, desflurane did not exert any proapoptotic effects. The apoptotic signaling pathway used by sevoflurane involved disruption of the mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. In addition, the authors observed a proteolytic cleavage of the inactive p32 procaspase 3 to the active p17 fragment, increased caspase-3-like activity, and cleavage of the caspase-3 substrate poly-ADP-ribose-polymerase. Sevoflurane-induced apoptosis was blocked by the general caspase inhibitor Z-VAD.fmk. Death signaling was not mediated via the Fas/CD95 receptor pathway because neither anti-Fas/CD95 receptor antagonism nor FADD deficiency or caspase-8 deficiency were able to attenuate sevoflurane-mediated apoptosis. Conclusion Sevoflurane and isoflurane induce apoptosis in T lymphocytes via increased mitochondrial membrane permeability and caspase-3 activation, but independently of death receptor signaling.


Blood ◽  
2009 ◽  
Vol 113 (24) ◽  
pp. 6206-6214 ◽  
Author(s):  
Bruno Nervi ◽  
Pablo Ramirez ◽  
Michael P. Rettig ◽  
Geoffrey L. Uy ◽  
Matthew S. Holt ◽  
...  

Abstract The CXCR4–SDF-1 axis plays a central role in the trafficking and retention of normal and malignant stem cells in the bone marrow (BM) microenvironment. Here, we used a mouse model of acute promyelocytic leukemia (APL) and a small molecule competitive antagonist of CXCR4, AMD3100, to examine the interaction of mouse APL cells with the BM microenvironment. APL cells from a murine cathepsin G-PML-RARα knockin mouse were genetically modified with firefly luciferase (APLluc) to allow tracking by bioluminescence imaging. Coculture of APLluc cells with M2-10B4 stromal cells protected the leukemia cells from chemotherapy-induced apoptosis in vitro. Upon injection into syngeneic recipients, APLluc cells rapidly migrated to the BM followed by egress to the spleen then to the peripheral blood with death due to leukostasis by day 15. Administration of AMD3100 to leukemic mice induced a 1.6-fold increase in total leukocytes and a 9-fold increase of circulating APL blast counts, which peak at 3 hours and return to baseline by 12 hours. Treatment of leukemic mice with chemotherapy plus AMD3100 resulted in decreased tumor burden and improved overall survival compared with mice treated with chemotherapy alone. These studies provide a proof-of-principle for directing therapy to the critical tethers that promote AML-niche interactions.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1593-1593
Author(s):  
Tanyel Kiziltepe ◽  
Kenji Ishitsuka ◽  
Teru Hideshima ◽  
Noopur Raje ◽  
Norihiko Shiraishi ◽  
...  

Abstract Multiple myeloma (MM) is currently an incurable hematological malignancy. A major reason for the failure of currently existing therapies is the chemotherapeutic resistance acquired by the MM cells upon treatment. Overexpression of glutathione S-transferases (GST) has been shown as one possible mechanism of anti-cancer drug resistance in a broad spectrum of tumor cells. JS-K (O2-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) belongs to a class of pro-drugs which are designed to release nitric oxide (NO) on reaction with GST. JS-K can possibly turn GST overexpression to the tumor’s disadvantage by (1) consuming intracellular GSH and preventing drug inactivation; and (2) by exposing tumor cells to high intracellular concentrations of NO. JS-K has potent in vitro and in vivo anti-leukemic activity. The purpose of the present study is to examine the biological effects of JS-K on human MM cells. We demonstrate that JS-K has significant in vitro cytotoxicity on MM cell lines, with an IC50 of 0.3-2 mM at 48 hours. JS-K also induces cytotoxicity on cell lines that are resistant to conventional chemotherapy (i.e., MM1R, RPMI-Dox40, RPMI-LR5, RPMI-MR20). Importantly, no cytotoxic effects of JS-K were detected on peripheral blood mononuclear cells (PBMNC) obtained from healthy volunteers at these doses. Moreover, JS-K could overcome the survival and growth advantages conferred by interleukin-6 (IL-6) and insulin-like growth factor-1 (IGF-1), or by adherence of MM cells to bone marrow stromal cells (BMSC). JS-K caused a transient G2/M arrest followed by apoptosis, as determined by flow cytometric analysis using PI, Annexin V and Apo2.7 staining. JS-K-induced apoptosis was associated with caspase 8, 7, 9 and 3 activation. Interestingly, Fas was upregulated by JS-K, suggesting the involvement of death receptor pathway in induction of apoptosis. JS-K also triggered Mcl-1 cleavage and Bcl-2 phosphorylation, suggesting the involvement of mitochondrial pathway. In addition, apoptosis inducing factor (AIF), endonuclease G (EndoG) and cytochrome c were released into the cytosol during apoptosis. Taken together, these findings suggest the involvement of both intrinsic and extrinsic apoptotic pathways in JS-K-induced apoptosis in MM cells. In summary, our studies demonstrate that JS-K induces apoptosis and overcomes in vitro drug resistance in MM cells. Therefore, JS-K is a novel compound which carries significant potential to be included in the repertoire of existing treatment modalities for MM. Ongoing studies are delineating the mechanism of action of JS-K to provide the preclinical rationale for combination therapies to overcome drug resistance and improve patient outcome.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1847-1847
Author(s):  
Chirag Acharya ◽  
Mike Y Zhong ◽  
Daniel Tannenbaum ◽  
Michelle Chen ◽  
Matt Ma ◽  
...  

Abstract Abstract 1847 Aminopeptidases (AP) are necessary for the growth and development of malignant cells and have a selectively important role in the maintenance of intracellular amino acid (AA) levels in neoplastic cells. CHR2797 is a novel, low nanomolar inhibitor of the M1 family of AP, a group of metalloenzymes containing a central Zn2+ ion. CHR2797 has antiproliferative and apoptotic effects against MM in vitro by inducing the AA deprivation response (AADR). TST, an oral, chronically administered agent with a good safety profile has demonstrated activity in patients with relapsed/refractory AML and is currently under study as part of combination therapy for untreated elderly patients with AML. At the epigenetic regulatory level, Zn-dependent histone deacetylase (HDAC) cause the deacetylation of histone and non-histone cellular proteins which are critical for gene expression, inducing apoptosis and cell cycle arrest in cancer cells. LBH589 (Panobinostat) is an established pan-HDAC inhibitor with potent in vitro anti-cancer activity in many hematological malignancies. The clinical efficacy of Panobinostat is currently being studied in several Phase II/III clinical trials with particular promise seen in the treatment of MM. Here we examined the potential therapeutic effect of CHR2797, alone and with LBH589, against MM cells. Using MTS and CTG assays, CHR2797, at clinically achievable concentrations, decreased survival and proliferation in MM1S and IL-6-dependent ANBL6 cells, in the presence or absence of bone marrow stromal cells following 72 hours incubation. CHR2797 induces apoptosis in MM cells via activation of Caspase 3/7 and 9 but not Caspase 8. Significantly, CHR2797 (10 μM) induced apoptosis in patient MM cells, as seen by % of annexin V and PI from 22 + 1.5% to 39 + 2.3% after 48h incubation. Combined treatment with CHR2797 and LBH589 in MM cells (MM1S, ANBL6, and INA6) further reduced cell viability following 72 hour incubation when compared with CHR2797 treatment alone, as determined by CTG viability luminescent assay. Both drugs together also augmented growth inhibitory effects when compared with single agent alone, after 72 hours incubation followed by MTS assay. Importantly, the combination of both drugs increased caspase 3/7- & 9-mediated apoptosis than CHR2797 alone in these MM cells following 24h-treatment. Cell cycle analysis (CHR2797 at 1μM; LBH589 at 1 nM) showed an increased growth arrest in G0/G1 cells in MM1R cells treated with both drugs versus CHR2797 alone after 24 hours: 68.5±3.3% versus 36±2.5%. Furthermore, CHR2797 inhibited anti-apoptotic protein Mcl-1 in MM1R and U266 MM cells by immunoblottings. Combined treatment with CHR2797 and LBH589 further blocked Mcl-1 when compared with either treatment alone after 24 hours incubation. Together, these results show that the combination of CHR2797 and LBH589 enhanced anti-myeloma effects when compared with either drug alone. This combination, which also has the potential of being without overlapping clinical toxicities, provides a promising novel approach to anti-myeloma therapy. Disclosures: Singer: Cell Therapeutics, Inc: Employment, Equity Ownership. Richardson:Novartis: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document