scholarly journals Spot 14 Gene Deletion Increases Hepatic de Novo Lipogenesis

Endocrinology ◽  
2001 ◽  
Vol 142 (10) ◽  
pp. 4363-4370 ◽  
Author(s):  
Qihong Zhu ◽  
Ami Mariash ◽  
Mark R. Margosian ◽  
Sunil Gopinath ◽  
Mohammod T. Fareed ◽  
...  
Endocrinology ◽  
2005 ◽  
Vol 146 (8) ◽  
pp. 3343-3350 ◽  
Author(s):  
Qihong Zhu ◽  
Grant W. Anderson ◽  
Gregory T. Mucha ◽  
Elizabeth J. Parks ◽  
Jennifer K. Metkowski ◽  
...  

Abstract We generated a Spot 14 null mouse to assess the role of Spot 14 in de novo lipid synthesis and report the Spot 14 null mouse exhibits a phenotype in the lactating mammary gland. Spot 14 null pups nursed by Spot 14 null dams gain significantly less weight than wild-type pups nursed by wild-type dams. In contrast, Spot 14 null pups nursed by heterozygous dams show similar weight gain to wild-type littermates. We found the triglyceride content in Spot 14 null milk is significantly reduced. We demonstrate this reduction is the direct result of decreased de novo lipid synthesis in lactating mammary glands, corroborated by a marked reduction of medium-chain fatty acids in the triglyceride pool. Importantly, the reduced lipogenic rate is not associated with significant changes in the activities or mRNA of key lipogenic enzymes. Finally, we report the expression of a Spot 14-related gene in liver and adipose tissue, which is absent in the lactating mammary gland. We suggest that expression of both the Spot 14 and Spot 14-related proteins is required for maximum efficiency of de novo lipid synthesis in vivo and that these proteins impart a novel mechanism regulating de novo lipogenesis.


2020 ◽  
Vol 33 (11) ◽  
pp. 1755-1762
Author(s):  
Muhammad Cahyadi ◽  
Hee-Bok Park ◽  
Dong Won Seo ◽  
Shil Jin ◽  
Nuri Choi ◽  
...  

Objective: Thyroid hormone responsive spot 14 alpha (THRSP) has been used to investigate the regulation of de novo lipogenesis because the variation of THRSP mRNA content in the tissue affects directly the ability of that tissue to synthetize lipids. Also, this gene responds to thyroid hormone stimulation and high level of carbohydrate feeding or insulin-injection. This study was carried out to investigate variations within THRSP and their effects on body and carcass weights in Korean native chicken (KNC).Methods: A total of 585 chickens which represent the five lines of KNC (Black, Gray-Brown, Red-Brown, White, and Yellow-Brown) were reared and body weight data were recorded every two weeks from hatch until 20 weeks of age. Polymerase chain reaction- restriction fragment length polymorphism, DNA chips for Agilent 2100 Bioanalyzer, and Fluidigm Genotyping Technology, were applied to genotype selected markers. A linear mixed-effect model was used to access association between these single nucleotide polymorphism (SNP) markers and growth-related traits.Results: A total of 30 polymorphisms were investigated in THRSP. Of these, nine SNPs for loci were selected to perform association analyses. Significant associations were detected between g.-49G>T SNP with body weight at 20 weeks of age (BW20), g.451T>C SNP with growth at 10 to 12 weeks of age (GR10-12), and g.1432A>C SNP with growth at 14 to 16 weeks trait (GR14-16) and body weight at 18 weeks of age (BW18). Moreover, diplotype of the THRSP gene significantly affected body weight at 12 weeks of age (BW12) and GR10-12 traits. Diplotype of ht1/ht2 was favorable for BW12 and GR10-12 traits.Conclusion: These results suggest that THRSP can be regarded as a candidate gene for growth traits in KNC.


2014 ◽  
Vol 52 (08) ◽  
Author(s):  
T Tolstik ◽  
C Marquardt ◽  
C Matthäus ◽  
C Beleites ◽  
C Krafft ◽  
...  

2004 ◽  
Vol 52 (Suppl 1) ◽  
pp. S122.6-S123
Author(s):  
M. Garg ◽  
C. Bell ◽  
L. Rogers ◽  
S. Bassilian ◽  
W. N.P. Lee

2021 ◽  
Vol 11 (3) ◽  
pp. 1259
Author(s):  
Qiong Wu ◽  
Bo Zhao ◽  
Guangchao Sui ◽  
Jinming Shi

Aberrant metabolism is one of the hallmarks of cancers. The contributions of dysregulated metabolism to cancer development, such as tumor cell survival, metastasis and drug resistance, have been extensively characterized. “Reprogrammed” metabolic pathways in cancer cells are mainly represented by excessive glucose consumption and hyperactive de novo lipogenesis. Natural compounds with anticancer activities are constantly being demonstrated to target metabolic processes, such as glucose transport, aerobic glycolysis, fatty acid synthesis and desaturation. However, their molecular targets and underlying anticancer mechanisms remain largely unclear or controversial. Mounting evidence indicated that these natural compounds could modulate the expression of key regulatory enzymes in various metabolic pathways at transcriptional and translational levels. Meanwhile, natural compounds could also inhibit the activities of these enzymes by acting as substrate analogs or altering their protein conformations. The actions of natural compounds in the crosstalk between metabolism modulation and cancer cell destiny have become increasingly attractive. In this review, we summarize the activities of natural small molecules in inhibiting key enzymes of metabolic pathways. We illustrate the structural characteristics of these compounds at the molecular level as either inhibitor of various enzymes or regulators of metabolic pathways in cancer cells. Our ultimate goal is to both facilitate the clinical application of natural compounds in cancer therapies and promote the development of novel anticancer therapeutics.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1181
Author(s):  
Raffaella Soleti ◽  
Marine Coué ◽  
Charlotte Trenteseaux ◽  
Gregory Hilairet ◽  
Lionel Fizanne ◽  
...  

Epidemiological studies have shown that carrot consumption may be associated with a lower risk of developing several metabolic dysfunctions. Our group previously determined that the Bolero (Bo) carrot variety exhibited vascular and hepatic tropism using cellular models of cardiometabolic diseases. The present study evaluated the potential metabolic and cardiovascular protective effect of Bo, grown under two conditions (standard and biotic stress conditions (BoBS)), in apolipoprotein E-knockout (ApoE−/−) mice fed with high fat diet (HFD). Effects on metabolic/hemodynamic parameters and on atherosclerotic lesions have been assessed. Both Bo and BoBS decreased plasma triglyceride and expression levels of genes implicated in hepatic de novo lipogenesis and lipid oxidation. BoBS supplementation decreased body weight gain, secretion of very-low-density lipoprotein, and increased cecal propionate content. Interestingly, Bo and BoBS supplementation improved hemodynamic parameters by decreasing systolic, diastolic, and mean blood pressure. Moreover, Bo improved cardiac output. Finally, Bo and BoBS substantially reduced the aortic root lesion area. These results showed that Bo and BoBS enriched diets corrected most of the metabolic and cardiovascular disorders in an atherosclerosis-prone genetic mouse model and may therefore represent an interesting nutritional approach for the prevention of cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document