scholarly journals Relative Overexpression of Macrophage-Derived Cytokines in Orbital Adipose Tissue from Patients with Graves’ Ophthalmopathy

2003 ◽  
Vol 88 (9) ◽  
pp. 4246-4250 ◽  
Author(s):  
Seema Kumar ◽  
Rebecca S. Bahn

Graves’ ophthalmopathy (GO) is an autoimmune disorder involving the adipose and connective tissues of the orbit. The study of cytokines present in these tissues may reveal the nature of the cells and immune responses involved in GO pathogenesis. In the current study, we performed relative quantification of the expression of cytokine genes in orbital adipose tissue from patients with GO (n = 6) and normal individuals (n = 2). Real-time RT-PCR was performed using fluorescent probes and primers for cytokines including IL-1β, IL-2, IL-4, IL-5, IL-8, IL-10, IFN-γ, and TNF-α. Results showed IL-1β to be the gene having the greatest fold expression increase over normal in four of six patients. TNF-α was increased in all six GO patients. In addition, IL-8, IL-10, and IFN-γ were increased in five of six GO patients. We found no evidence of either IL-4 or IL-5 expression in any of the GO or normal samples. The increased expression of the macrophage-derived cytokines IL-1β, TNF-α, and IL-10 suggests the presence of macrophage activation and ongoing antigen presentation within the orbit in GO. In addition, the overexpression of IFN-γ, without evidence of IL-4 or IL-5 expression, supports the concept that cell-mediated, rather than humoral, immunity plays the predominant role in pathogenesis of this disorder.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5011-5011
Author(s):  
Haiping He ◽  
Atsuko Takahashi ◽  
Yuki Yamamoto ◽  
Akiko Hori ◽  
Yuta Miharu ◽  
...  

Background: Mesenchymal stromal cells (MSC) are known to have the immunosuppressive ability and have been applied in clinic to treat acute graft-versus-host disease (GVHD), as one of severe complications after hematopoietic stem cells transplantation (HSCT) in Japan. However, MSC are activated to suppress the immune system only upon the stimulation of inflammatory cytokines and the clinical results of MSC therapies for acute GVHD are varied. It is ideal that MSC are primed to be activated and ready to suppress the immunity (=priming) before administration in vivo. Triptolide (TPL) is a diterpene triepoxide purified from a Chinese herb - Tripterygium Wilfordii Hook F (TWHF). It has been shown to possess anti-inflammatory and immunosuppressive properties in vitro. In this study, we aim to use TPL as the activator for umbilical cord-derived MSC (UC-MSC) to entry stronger immunosuppressive status. Methods: The proliferation of UC-MSC with TPL at the indicated concentrations for different time of 24, 48, 72, and 96 hours. Cell counting kit-8(CCK-8) was added in the culture medium to detect cell toxicity and the absorbance was measured using microplate reader. Flow cytometry was used to identify the MSC surface markers expression. TPL-primed UC-MSC were once replaced with fresh medium and co-culture with mixed lymphocyte reaction (MLR) consisted with mononuclear cells (MNCs) stained with CFSE and irradiated allogenic dendritic cell line (PMDC05) in RPMI 1640 medium supplemented with 10 % FBS (complete medium). IDO-1, SOD1, and TGF-β gene expression in TPL-primed UC-MSC and UC-MSC induced by 10 ng/ml IFN-γ and/or 15 ng/ml TNF-α were evaluated by RT-PCR. PDL1 and PDL2 expression in TPL-primed UC-MSC and UC-MSC in response to IFN-γ and/or TNF-α were checked by Flowjo. Results: Exposure of TPL for UC-MSC for 72hour at the concentration above 0.1 μM resulted in the cell damage significantly. Therefore, we added TPL in UC-MSC at 0.01μM of TPL for up to 48 hours, then washed thourouphly for the following culture for experiments. To evaluate the influence of TPL on the surface markers of UC-MSC, we cultured UC-MSC for 4 hours in complete medium following culture with 0.01μM of TPL for 20 hours (TPL-primed UC-MSC). TPL-primed UC-MSC revealed positive for CD105, CD73, and CD90, negative for CD45, CD34, CD14 or CD11b, CD79α or CD19 and HLA-DR surface molecules as same as the non-primed UC-MSC. In MLR suppression by UC-MSC, the TPL-primed UC-MSC activity revealed stronger anti-proliferative effect on the CD4+ and CD8+ T cells activated by allogeneic DC than those of non-primed UC-MSC in MLR. Furthermore, the TPL-primed UC-MSC promoted the expression of IDO-1, SOD1 and TGF-β in response to IFN-γ+/-TNF-α by RT-PCR and enhanced the expression of PD-L1 by FACS analysis. Discussion:In this study, we found the TPL-primed UC-MSC showed stronger antiproliferative potency on CD4+ and CD8+ T cells compared with non-primed UC-MSC. TPL-primed UC-MSC promoted the expression of IDO-1, SOD1 and TGF-β stimulated by IFN-γ+/-TNF-α, although TPL alone did not induce these factors. Furthermore, we found that the PD1 ligand (PD-L1) was induced in TPL-primed UC-MSC, likely IFN-γ enhanced the PD-L1 expression, evaluated by flowcytometry. These results suggested that TPL-primed UC-MSC seemed more sensitive to be activated as the immunosuppressant. Here, we firstly report the new function of TPL to induce the upregulation of immunosuppressive effect, although the mechanisms of TPL inhibition to MSC need to be explore. Conclusively, TPL-primed UC-MSC might be applied for the immunosuppressive inducer of MSC. Figure Disclosures He: SASAGAWA Medical Scholarship: Research Funding; IMSUT Joint Research Project: Research Funding. Nagamura:AMED: Research Funding. Tojo:AMED: Research Funding; Torii Pharmaceutical: Research Funding. Nagamura-Inoue:AMED: Research Funding.


2020 ◽  
Author(s):  
Daimon P. Simmons ◽  
Hung N. Nguyen ◽  
Emma Gomez-Rivas ◽  
Yunju Jeong ◽  
Antonia F. Chen ◽  
...  

AbstractMacrophages regulate protective immune responses to infectious microbes, but aberrant macrophage activation frequently drives pathological inflammation. To identify regulators of vigorous macrophage activation, we analyzed RNA-seq data from synovial macrophages and identified SLAMF7 as a receptor associated with a super-activated macrophage state in rheumatoid arthritis. We implicated IFN-γ as a key regulator of SLAMF7 expression. Engaging this receptor drove an exuberant wave of inflammatory cytokine expression, and induction of TNF-α following SLAMF7 engagement amplified inflammation through an autocrine signaling loop. We observed SLAMF7-induced gene programs not only in macrophages from rheumatoid arthritis patients, but in gut macrophages from active Crohn’s disease patients and lung macrophages from severe COVID-19 patients. This suggests a central role for SLAMF7 in macrophage super-activation with broad implications in pathology.


2012 ◽  
Vol 393 (1-2) ◽  
pp. 101-106 ◽  
Author(s):  
Vijaya Lakshmi Simhadri ◽  
Hinrich P. Hansen ◽  
Venkateswara R. Simhadri ◽  
Katrin S. Reiners ◽  
Martina Bessler ◽  
...  

Abstract The interplay between dendritic cells (DCs) and natural killer (NK) cells directs adaptive immune responses. The molecular basis of the cross-talk is largely undefined. Here, we provide evidence for a contribution of CD30 (TNFRSF8) and its ligand CD30L (TNFSF8) expressed on NK cells and DCs, respectively. We demonstrate that CD30-mediated engagement of CD30L induced cytokine secretion from immature DCs via the mitogen-activated protein kinase pathway. Moreover, CD30L engagement promoted differentiation to mature DCs. On the contrary, the engagement of CD30 on NK cells resulted in an NF-κB-dependent release of TNF-α/IFN-γ. These data uncover a novel and unexpected role for CD30/CD30L that contributes to proinflammatory immune responses.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1743-1743
Author(s):  
Mathew L. Lesniewski ◽  
Laura R. Fanning ◽  
Margeret Kozik ◽  
Richard P. Weitzel ◽  
Yeal Hegerfeldt ◽  
...  

Abstract Introduction: Umbilical cord blood (UCB) CD4+ T-cells have been shown to express significant levels of BACH2 transcription factor protein compared to adult blood (AB) CD4+ T-cells. Previously, NFAT1 siRNA knockdown of UCB T-cells exhibited a significantly higher BACH2 mRNA expression, and IFN-γ, TNF-α. and CTLA-4 mRNA levels were significantly suppressed. BACH2, a member of the b-Zip family, has been shown to act as a heterodimer with the bZip protein MafK, as a transcriptional inhibitor via recruitment of a histone deacetylase class II complex (HDAC II) in differentiating B-cells, and neurons. Due to observed inverse expression of BACH2 and NFAT1 in UCB CD4+ T-cells, we hypothesized that BACH2 may regulate transcription factors known to bind with NFAT1 including AP-1 proteins JunB and FosL1. We tested this by siRNA knockdown of BACH2 in primary UCB-derived CD4+ T-cells. Key developmental transcription factors JUNB, FosL1, NFAT1 and downstream IFN-γ, and TNF-α were mRNA analyzed. Methods: UCB T-cells were purified using autoMACs system (Miltenyi). After overnight culture, T-cells were transfected with BACH2 siRNA (Dharmacon) using Amaxa Nucleofector system (Amaxa Inc). Both siRNA treated and control cells were incubated in media for 18 hours, and then stimulated using anti-CD3/anti-CD28 antibodies (BD BioScience). Aliquots of cells were collected at specified time points post-stimulation for protein and total RNA isolation. The relative change in mRNA levels for BACH2, JUNB, FosL1, IFN-γ, NFAT1, and TNF-α were determined by Lightcycler SybrGreen real time RT-PCR system (Roche). siRNA knockdown of BACH2 protein in transfected UCB T-cells was confirmed by western blot. Results: Real-time RT-PCR of BACH2 siRNA treated UCB CD4+ T-cells stimulated with anti-CD3/CD28 antibodies and analyzed after 6 hrs of stimulation showed a 4 log increase in FosL1 and NFAT1 mRNA, a 3 log increase in JunB mRNA, a 5 log increase in IFN-γ as compared to stimulated control UCB T-cells. TNF-α mRNA was decreased by 5 logs in BACH2 siRNA treated UCB T-cells as compared to control. CD3/CD28 stimulated untransfected UCB T-cells were previously shown to have decrease expression of NFAT1, JunB, FosL1, IFN-γ, and TNF-α, and in UCB T-cells compared to stimulated AB T-cells. Conclusions: BACH2 expression correlates with an inhibition of expression of AP1 transcription regulatory proteins in UCB T-cells during primary CD3/CD28 stimulation. The complete activation of the T-cell requires the activation of AP1 by CD28 pathway otherwise the antigen presenting cell signals the T-cell to enter anergy. In UCB CD4+ T-cells express BACH2, which acts as a transcriptional inhibitor of two critical AP1 genes, JUNB and FosL1, which mediate the CD28 co-stimulatory pathway. These results further suggests that expression of BACH2 in UCB T-cells may contribute to lower incidence of alloreactivity observed in leukemia patients receiving UCB stem cells compared to AB bone marrow stem cells and thus leads to low GVHD, and contribute to the weak Th1 response seen in stimulated UCB T-cells by reduced amounts of AP1 protein available for activating the T-cell.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4099-4099
Author(s):  
Zhenhua Qiao ◽  
Xiujuan Zhao

Abstract Objective: To explore mechanism of human marrow mesenchymal stem cells (MSCs) in treating patients with aplastic anemia(AA). Methods: MSCs in patients with aplastic anemia(AA) and the control group were separated with Percoll(1.073g/m L) and cultured in low glucose DMEM. Then, observed their morphologies,checked their molecule surface antigen by flow cytometry and examined the process of adipogenic differention. The mononuclear cells (MNC)of marrow in patients with AA were enriched based 1.077g/L density centrifuge and cultured in the 1640 medium. (1)MSC in control group and MNC in AA group were co-cultured with or without cytokines. The function of supporting hematopoiesis for MSC was to be observed in single confluence layer after plating by counting the total cells and the clones in every well every week. Then analyzed the dynamics of proliferation. T cells were harvested by using nylon column. MSC in control group and T cells in AA group were co-cultured. The proliferation of T cell was measured by MTT method. The CD25,CD69,CD4,CD8,Annexin-V expression rates of CD3+T cells were analyzed by flow cytometry .The gene and protein of IL-2, IL-4,IL-10,TNF-α,IFN-γ,TGF-β1 were examined by RT-PCR and ELISA respectively. MSC treated to the model of AA, by the examination of peripheral hemogram, bone marrow biopsy, pathological section of spleen. Results: There was no significant difference between control group MSC and AA-MSC in morphologies but adipogenic differentiation in AA patients is earlier than controls. The clones of CFU-GM in group(MSC)(78.46±3.58)/2×105 cells, after 14 days cultured was significantly higher than(9.21±4.32)/2×105 cells in group(CK + DMEM medium), while lower than (99.32±4.34)/2×105 cells in group(MSC+CK). (1)the Treg cells (TCD4+CD25+) in AA group (2.01±1.21)/ 2×105 was significantly lower than (4.43±1.67)/2×105 cells in control group, while(5.43±2.31) / 2×105 in group (MSC+AAT) was no more than (4.43±1.67)/2×105 cells in control group. (2) MSCs significantly inhibited T cell proliferation (P< 0. O5)by MTT. (3) RT-PCR and ELISA analysis showed that MSCs induced the expression of IL-4, IL-10, TGF-β1 and decreased significantly the expression of IL-2, TNF-α, IFN -γ in T cells of AA. the model of AA treated by MSCs showed improvements in 3 blood components greatly(p<0.05), Bone marrow proliferated and restored to the normal level, hematopoietic cell increased obviously (hematopoietic cell capacity was more than 40%), and atrophied spleen restore to normality. Conclusions: morphologies of AA’MSC had no evident different with the control but was more easy adipogenic differention. aplastic anemia belongs to autoimmune diseases in which T cells effect organ-specific destruction. The fundamental mechanism of MSC in treating AA should be potential to promote hematopoietic cell proliferation by adjusting immunity.


2009 ◽  
Vol 37 (04) ◽  
pp. 669-683 ◽  
Author(s):  
Ying Ma ◽  
Lan-Lan Zhou ◽  
Hai-Yan Yan ◽  
Mei Liu

The effects of extract of Paederia scandens (LOUR.) MERRILL (Rubiaceae) (EPS), a Chinese traditional herbal medicine, on inflammatory and immune responses and their mechanisms in MSU crystals-induced (GA) rats were studied. GA rats were established. Ankle joint volume of rats was measured by volume meter; the level of TNF-α and IL-1β was determined by radioimmunoassay. mRNA expressions of TNF-α and IL-1β in synovial tissue of GA rats were analyzed by RT-PCR, and the expression of NF-κB was detected by immunohistochemistry. The administration of EPS (2.25, 4.5 g/kg, ig 9 days) inhibited the inflammatory response in GA rats. The mRNA expressions of TNF-α and IL-1β were also significantly suppressed in synovial tissue. In addition, EPS (2.25, 4.5 g/kg, ig 9 days) inhibited the expression of TNF-α and IL-1β and the biological activity of NF-κB. These results suggested that EPS possesses antiinflammatory effects by modulating pro-inflammatory mediators' production in synovial tissue and inactivating NF-κB pathway transmembrane signal transduction which plays a crucial role in the pathogenesis of this disease.


2008 ◽  
Vol 82 (10) ◽  
pp. 4844-4852 ◽  
Author(s):  
Jinyan Liu ◽  
Bonnie A. Ewald ◽  
Diana M. Lynch ◽  
Matthew Denholtz ◽  
Peter Abbink ◽  
...  

ABSTRACT Recombinant adenovirus serotype 5 (rAd5) vaccine vectors for human immunodeficiency virus type 1 (HIV-1) and other pathogens have been shown to elicit antigen-specific cellular immune responses. Rare serotype rAd vectors have also been constructed to circumvent preexisting anti-Ad5 immunity and to facilitate the development of novel heterologous rAd prime-boost regimens. Here we show that rAd5, rAd26, and rAd48 vectors elicit qualitatively distinct phenotypes of cellular immune responses in rhesus monkeys and can be combined as potent heterologous prime-boost vaccine regimens. While rAd5-Gag induced primarily gamma interferon-positive (IFN-γ+) and IFN-γ+/tumor necrosis factor alpha+ (TNF-α+) T-lymphocyte responses, rAd26-Gag and rAd48-Gag induced higher proportions of interleukin-2+ (IL-2+) and polyfunctional IFN-γ+/TNF-α+/IL-2+ T-lymphocyte responses. Priming with the rare serotype rAd vectors proved remarkably effective for subsequent boosting with rAd5 vectors. These data demonstrate that the rare serotype rAd vectors elicited T-lymphocyte responses that were phenotypically distinct from those elicited by rAd5 vectors and suggest the functional relevance of polyfunctional CD8+ and CD4+ T-lymphocyte responses. Moreover, qualitative differences in cellular immune responses may prove critical in determining the overall potency of heterologous rAd prime-boost regimens.


2004 ◽  
Vol 287 (2) ◽  
pp. E331-E339 ◽  
Author(s):  
Muhammad R. Peeraully ◽  
John R. Jenkins ◽  
Paul Trayhurn

The sympathetic nervous system plays a central role in lipolysis and the production of leptin in white adipose tissue (WAT). In this study, we have examined whether nerve growth factor (NGF), a target-derived neurotropin that is a key signal in the development and survival of sympathetic neurons, is expressed and secreted by white adipocytes. NGF mRNA was detected by RT-PCR in the major WAT depots of mice (epididymal, perirenal, omental, mesenteric, subcutaneous) and in human fat (subcutaneous, omental). In mouse WAT, NGF expression was observed in mature adipocytes and in stromal vascular cells. NGF expression was also evident in 3T3-L1 cells before and after differentiation into adipocytes. NGF protein, measured by ELISA, was secreted from 3T3-L1 cells, release being higher before differentiation. Addition of the sympathetic agonists norepinephrine, isoprenaline, or BRL-37344 (β3-agonist) led to falls in NGF gene expression and secretion by 3T3-L1 adipocytes, as did IL-6 and the PPARγ agonist rosiglitazone. A substantial decrease in NGF expression and secretion occurred with dexamethasone. In contrast, LPS increased NGF mRNA levels and NGF secretion. A major increase in NGF mRNA level (9-fold) and NGF secretion (≤40-fold) in 3T3-L1 adipocytes occurred with TNF-α. RT-PCR showed that the genes encoding the p75 and trkA NGF receptors were expressed in mouse WAT. These results demonstrate that white adipocytes secrete NGF (an adipokine), NGF synthesis being influenced by several factors with TNF-α having a major stimulatory effect. We suggest that NGF is a target-derived neurotropin and an inflammatory response protein in white adipocytes.


2013 ◽  
Vol 10 (3) ◽  
pp. 30-34
Author(s):  
A P Toptygina ◽  
V A Alioshkin

Background. The aim of the study was to investigate peculiarities of immune responses on the vaccination with Priorix in healthy children and patients with atopic dermatitis. Methods. Thirty five healthy children aged 1-2 years old (Group 1) and 15 children the same age with atopic dermatitis (Group 2) were vaccinated with Priorix. Serum level of IgE was measured by ELISA, and serum concentrations of 7 cytokines: IL-4, IL-5, IL-6, IL-8, IL-10, IFN-γ, and TNF-α were measured by BioPlex technology before vaccination, 7 days, and 30 days after. Serum level of IgE was measured by ELISA. Results. The level of serum IgE relatively decreased or increased on seventh day after vaccination. In a month IgE level returned back. It was found that in group1 51,4% children demonstrated Th1 type response and 48,6% children showed Th2 type response on the vaccination. Similar distribution was obtained in group 2 (53,3% children showed Th1 type response and 46,7% children demonstrated Th2 type). A significant positive correlation was observed between IgE level increasing and Th2 type of immune response. It was shown that 68,6% of children of group 1 and 66,7% of children of group 2 demonstrated after vaccination the superiority of anti-inflammatory IL-10 over pro-inflammatory TNF-α. We suppose that children with atopic dermatitis can be vaccinated with Priorix.


2021 ◽  
Vol 12 ◽  
Author(s):  
Poupak Fallahi ◽  
Silvia Martina Ferrari ◽  
Giusy Elia ◽  
Francesca Ragusa ◽  
Sabrina Rosaria Paparo ◽  
...  

Graves’ disease (GD) is an organ-specific autoimmune disorder of the thyroid, which is characterized by circulating TSH-receptor (TSH-R) stimulating antibodies (TSAb), leading to hyperthyroidism. Graves’ ophthalmopathy (GO) is one of GD extra-thyroidal manifestations associated with the presence of TSAb, and insulin-like growth factor-1 receptor (IGF-1R) autoantibodies, that interact with orbital fibroblasts. Cytokines are elevated in autoimmune (i.e., IL-18, IL-6) and non-autoimmune hyperthyroidism (i.e., TNF-α, IL-8, IL-6), and this could be associated with the chronic effects of thyroid hormone increase. A prevalent Th1-immune response (not related to the hyperthyroidism per se, but to the autoimmune process) is reported in the immune-pathogenesis of GD and GO; Th1-chemokines (CXCL9, CXCL10, CXCL11) and the (C-X-C)R3 receptor are crucial in this process. In patients with active GO, corticosteroids, or intravenous immunoglobulins, decrease inflammation and orbital congestion, and are considered first-line therapies. The more deepened understanding of GO pathophysiology has led to different immune-modulant treatments. Cytokines, TSH-R, and IGF-1R (on the surface of B and T lymphocytes, and fibroblasts), and chemokines implicated in the autoimmune process, are possible targets of novel therapies. Drugs that target cytokines (etanercept, tocilizumab, infliximab, adalimumab) have been tested in GO, with encouraging results. The chimeric monoclonal antibody directed against CD20, RTX, reduces B lymphocytes, cytokines and the released autoantibodies. A multicenter, randomized, placebo-controlled, double-masked trial has investigated the human monoclonal blocking antibody directed against IGF-1R, teprotumumab, reporting its effectiveness in GO. In conclusion, large, controlled and randomized studies are needed to evaluate new possible targeted therapies for GO.


Sign in / Sign up

Export Citation Format

Share Document