scholarly journals Antithyroid Drugs Inhibit Thyroid Hormone Receptor-Mediated Transcription

2007 ◽  
Vol 92 (3) ◽  
pp. 1066-1072 ◽  
Author(s):  
Kenji Moriyama ◽  
Tetsuya Tagami ◽  
Takeshi Usui ◽  
Mitsuhide Naruse ◽  
Takuo Nambu ◽  
...  

Abstract Context: Methimazole (MMI) and propylthiouracil (PTU) are widely used as antithyroid drugs (ATDs) for the treatment of Graves’ disease. Both MMI and PTU reduce thyroid hormone levels by several mechanisms, including inhibition of thyroid hormone synthesis and secretion. In addition, PTU decreases 5′-deiodination of T4 in peripheral tissues. ATDs may also interfere with T3 binding to nuclear thyroid hormone receptors (TRs). However, the effect of ATDs on the transcriptional activities of T3 mediated by TRs has not been studied. Objective: The present study was undertaken to determine whether ATDs have an effect on the gene transcription regulated by T3 and TRs in vitro. Methods: Transient gene expression experiments and GH secretion assays were performed. To elucidate possible mechanisms of the antagonistic action of ATDs, the interaction between TR and nuclear cofactors was examined. Results: In the transient gene expression experiments, both MMI and PTU significantly suppressed transcriptional activities mediated by the TR and T3 in a dose-dependent manner. In mammalian two-hybrid assays, both drugs recruited one of the nuclear corepressors, nuclear receptor corepressor, to the TR in the absence of T3. In addition, PTU dissociated nuclear coactivators, such as steroid receptor coactivator-1 and glucocorticoid receptor interacting protein-1, from the TR in the presence of T3. Finally, MMI decreased the GH release that was stimulated by T3. Conclusions: ATDs inhibit T3 action by recruitment of transcriptional corepressors and/or dissociation of coactivators. This is the first report to show that ATDs can modulate T3 action at the transcriptional level.

2002 ◽  
Vol 87 (11) ◽  
pp. 5185-5190 ◽  
Author(s):  
Kenji Moriyama ◽  
Tetsuya Tagami ◽  
Takashi Akamizu ◽  
Takeshi Usui ◽  
Misa Saijo ◽  
...  

Abstract Bisphenol A (BPA), a monomer of polycarbonate plastics, has been shown to possess estrogenic properties and act as an agonist for the estrogen receptors. Although an epidemiologically based investigation has suggested that some chemicals could disrupt thyroid function in animals, the effects on thyroid hormone receptors (TRs) are unknown. We show here that BPA inhibits TR-mediated transcription by acting as an antagonist. In the transient gene expression experiments, BPA suppressed transcriptional activity that is stimulated by thyroid hormone (T3) in a dose-dependent manner. The inhibitory effects were observed in the presence of physiological concentrations of T3. In contrast, in the case of negatively regulated TSHα promoter, BPA activated the gene transcription that is suppressed by T3. To elucidate possible mechanisms of the antagonistic action of BPA, the effects on T3 binding and cofactor interaction with TR were examined. The Ki value for BPA was 200 μm when assessed by inhibition of [125I]T3 binding to rat hepatic nuclear TRs. In a mammalian two-hybrid assay, BPA recruited the nuclear corepressor to the TR. These results suggest that BPA could displace T3 from the TR and recruit a transcriptional repressor, resulting in gene suppression. This is the first report that BPA can antagonize T3 action at the transcriptional level. BPA may disrupt the function of various types of nuclear hormone receptors and their cofactors to disturb our internal hormonal environment.


2004 ◽  
Vol 33 (2) ◽  
pp. 445-458 ◽  
Author(s):  
Kwang-Huei Lin ◽  
Chia-yu Chen ◽  
Shen-Liang Chen ◽  
Chun-Che Yen ◽  
Ya-Hui Huang ◽  
...  

Thyroid hormones regulate growth, development, differentiation, and metabolic processes by interacting with and activating thyroid hormone receptors and associated pathways. We investigated the triiodothyronine (T3) modulation of gene expression, in human hepatocellular carcinoma cell lines, via a PCR-based cDNA subtraction method. Here we present further data on one of the T3-upregulated genes, fibronectin (FN). We demonstrate that the induction of FN protein expression by T3 in TRα1 and TRβ1 over-expressing cells was time and dose-dependent at the mRNA and protein levels. Blockade of protein synthesis by cycloheximide almost completely inhibited the concomitant induction of FN mRNA by T3, indicating that T3 indirectly regulates FN. Furthermore, nuclear-run on and FN promoter assay clearly can specifically increase the number of FN transcriptional demonstrated that the presence of T3 initiations. In addition, we further confirmed that the up-regulation of FN by T3 was mediated, at least in part, by transforming growth factor-β (TGF-β), because the induction of FN was blocked in a dose-dependent manner by the addition of TGF-β neutralizing antibody. In an effort to elucidate the we demonstrated the involvement of the signaling pathways involved in the activation of FN by T3, mitogen activated protein kinase/c-Jun N-terminal kinase/p38 MAPK (MAPK/JNK/p38) pathway. Although T3 induces the expression of TGF-β, neither wild-type nor dominant-negative Smad3 or Smad4 over-expression affected the activation of FN by T3. Thus, we demonstrate that T3 regulates FN gene expression indirectly at the transcriptional level, with the participation of the MAPK/JNK/p38 pathway and the TGF-β signaling pathway but independent of Smad3/4.


1991 ◽  
Vol 11 (10) ◽  
pp. 5079-5089 ◽  
Author(s):  
D E Banker ◽  
J Bigler ◽  
R N Eisenman

The c-erbA proto-oncogene encodes the thyroid hormone receptor, a ligand-dependent transcription factor which plays an important role in vertebrate growth and development. To define the role of the thyroid hormone receptor in developmental processes, we have begun studying c-erbA gene expression during the ontogeny of Xenopus laevis, an organism in which thyroid hormone has well-documented effects on morphogenesis. Using polymerase chain reactions (PCR) as a sensitive assay of specific gene expression, we found that polyadenylated erbA alpha RNA is present in Xenopus cells at early developmental stages, including the fertilized egg, blastula, gastrula, and neurula. By performing erbA alpha-specific PCR on reverse-transcribed RNAs from high-density sucrose gradient fractions prepared from early-stage embryos, we have demonstrated that these erbA transcripts are recruited to polysomes. Therefore, erbA is expressed in Xenopus development prior to the appearance of the thyroid gland anlage in tailbud-stage embryos. This implies that erbA alpha/thyroid hormone receptors may play ligand-independent roles during the early development of X. laevis. Quantitative PCR revealed a greater than 25-fold range in the steady-state levels of polyadenylated erbA alpha RNA across early stages of development, as expressed relative to equimolar amounts of total embryonic RNA. Substantial increases in the levels of erbA alpha RNA were noted at stages well after the onset of zygotic transcription at the mid-blastula transition, with accumulation of erbA alpha transcripts reaching a relative maximum in advance of metamorphosis. We also show that erbA alpha RNAs are expressed unequally across Xenopus neural tube embryos. This differential expression continues through later stages of development, including metamorphosis. This finding suggests that erbA alpha/thyroid hormone receptors may play roles in tissue-specific processes across all of Xenopus development.


2001 ◽  
pp. 59-64 ◽  
Author(s):  
F Bogazzi ◽  
L Bartalena ◽  
S Brogioni ◽  
A Burelli ◽  
F Raggi ◽  
...  

OBJECTIVE: To evaluate the molecular mechanisms of the inhibitory effects of amiodarone and its active metabolite, desethylamiodarone (DEA) on thyroid hormone action. MATERIALS AND METHODS: The reporter construct ME-TRE-TK-CAT or TSHbeta-TRE-TK-CAT, containing the nucleotide sequence of the thyroid hormone response element (TRE) of either malic enzyme (ME) or TSHbeta genes, thymidine kinase (TK) and chloramphenicol acetyltransferase (CAT) was transiently transfected with RSV-TRbeta into NIH3T3 cells. Gel mobility shift assay (EMSA) was performed using labelled synthetic oligonucleotides containing the ME-TRE and in vitro translated thyroid hormone receptor (TR)beta. RESULTS: Addition of 1 micromol/l T4 or T3 to the culture medium increased the basal level of ME-TRE-TK-CAT by 4.5- and 12.5-fold respectively. Amiodarone or DEA (1 micromol/l) increased CAT activity by 1.4- and 3.4-fold respectively. Combination of DEA with T4 or T3 increased CAT activity by 9.4- and 18.9-fold respectively. These data suggested that DEA, but not amiodarone, had a synergistic effect with thyroid hormone on ME-TRE, rather than the postulated inhibitory action; we supposed that this was due to overexpression of the transfected TR into the cells. When the amount of RSV-TRbeta was reduced until it was present in a limited amount, allowing competition between thyroid hormone and the drug, addition of 1 micromol/l DEA decreased the T3-dependent expression of the reporter gene by 50%. The inhibitory effect of DEA was partially due to a reduced binding of TR to ME-TRE, as assessed by EMSA. DEA activated the TR-dependent down-regulation by the negative TSH-TRE, although at low level (35% of the down-regulation produced by T3), whereas amiodarone was ineffective. Addition of 1 micromol/l DEA to T3-containing medium reduced the T3-TR-mediated down-regulation of TSH-TRE to 55%. CONCLUSIONS: Our results demonstrate that DEA, but not amiodarone, exerts a direct, although weak, effect on genes that are regulated by thyroid hormone. High concentrations of DEA antagonize the action of T3 at the molecular level, interacting with TR and reducing its binding to TREs. This effect may contribute to the hypothyroid-like effect observed in peripheral tissues of patients receiving amiodarone treatment.


1993 ◽  
Vol 13 (3) ◽  
pp. 1719-1727
Author(s):  
C S Suen ◽  
W W Chin

The expression of the rat growth hormone (rGH) gene in the anterior pituitary gland is modulated by Pit-1/GHF-1, a pituitary-specific transcription factor, and by other more widely distributed factors, such as the thyroid hormone receptors (TRs), Sp1, and the glucocorticoid receptor. Thyroid hormone (T3)-mediated transcriptional stimulation of rGH gene expression has been extensively studied in vivo and in vitro including the measurements of (i) rGH mRNA by blot hybridization, (ii) transcriptional rate of rGH gene by nuclear run-on, and (iii) reporter gene expression in which a chimeric plasmid containing 5'-flanking sequences of the rGH gene linked to a reporter gene has been transfected either stably or transiently into pituitary and/or nonpituitary cells. From these studies, it has been suggested that the Pit-1/GHF-1 binding site is necessary for full T3 action. We developed a cell-free in vitro transcription system to examine further the roles of the TRs and Pit-1/GHF-1 in rGH gene activation. Using GH3 nuclear extract as a source of TRs and Pit-1/GHF-1, this in vitro transcription assay showed that T3 stimulation of rGH promoter activity is dependent on the addition of T3 to the GH3 nuclear extract. This transcriptional stimulation was augmented with increasing concentrations of ligand and was T3, but not T4 or reverse T3, specific. T3-mediated stimulation of rGH promoter activity was completely abolished by preincubation of the nuclear extract with rGH-thyroid hormone response element (-200 to -160) but not with Pit-1/GHF-1 (-137 to -65) oligonucleotides. Further, neither deletion of both Pit-1/GHF-1 binding sites nor mutation of the proximal Pit-1/GHF-1 binding site from the rGH promoter abrogated the T3 effect. These results provide evidence that T3-stimulated rGH promoter activity is independent of Pit-1/GHF-1 and raise the possibility that the stimulation of rGH gene expression by T3 might involve direct interaction of TRs with the general transcriptional apparatus.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Chad E Grueter ◽  
Brett A Johnson ◽  
Xiaoxia Qi ◽  
John McAnally ◽  
Rhonda Bassel-Duby ◽  
...  

Aberrant cardiac metabolism is associated with obesity, type 2 diabetes and heart failure. The heart requires highly efficient metabolism to maintain the levels of ATP needed for contractility and pump function, however little is known about the role of the heart as a metabolic organ. Nuclear hormone receptors, such as thyroid hormone receptor play an important role in cardiovascular disease by significantly altering expression of genes involved in maintaining metabolic activity. The Mediator, a large multiprotein complex functions as a hub to control gene expression through association with transcriptional activators and repressors. We tested the hypothesis that Med13, a component of the Mediator complex, regulates cardiac function in a gain-of-function mouse model. Trangsenic mice overexpressing Med13 in the heart are lean, have increased energy expenditure, are resistant to high fat diet-induced obesity and have enhanced cardiac contractility. Microarray analysis and biochemical assays show that in vivo and in vitro Med13 selectively inhibits nuclear hormone receptor target genes of energy metabolism. These results implicate the Mediator complex regulates energy balance and cardiac contractility and suggests that the heart may function as a key component of mammalian energy homeostasis.


1998 ◽  
Vol 12 (10) ◽  
pp. 1551-1557 ◽  
Author(s):  
Wongi Seol ◽  
Bettina Hanstein ◽  
Myles Brown ◽  
David D. Moore

Abstract SHP (short heterodimer partner) is an unusual orphan receptor that lacks a conventional DNA-binding domain. Previous results have shown that it interacts with several other nuclear hormone receptors, including the retinoid and thyroid hormone receptors, and inhibits their ligand-dependent transcriptional activation. Here we show that SHP also interacts with estrogen receptors and inhibits their function. In mammalian and yeast two-hybrid systems as well as glutathione-S-transferase pull-down assays, SHP interacts specifically with estrogen receptor-α (ERα) in an agonist-dependent manner. The same assay systems using various deletion mutants of SHP map the interaction domain with ERα to the same SHP sequences required for interaction with the nonsteroid hormone receptors such as retinoid X receptor and thyroid hormone receptor. In transient cotransfection assays, SHP inhibits estradiol -dependent activation by ERα by about 5-fold. In contrast, SHP interacts with ERβ independent of ligand and reduces its ability to activate transcription by only 50%. These data suggest that SHP functions to regulate estrogen signaling through a direct interaction with ERα.


2011 ◽  
Vol 96 (6) ◽  
pp. E948-E952 ◽  
Author(s):  
Tetsuya Tagami ◽  
Takeshi Usui ◽  
Akira Shimatsu ◽  
Mutsuo Beniko ◽  
Hiroyuki Yamamoto ◽  
...  

Context: Patients with TSH-secreting pituitary adenomas (TSHoma) show inappropriate secretion of TSH; serum TSH levels are not suppressed despite high serum free thyroid hormone levels. The mechanism of a defect in negative regulation of TSH in a TSHoma is still unclear. Objective: Recently, we cloned a novel thyroid hormone receptor β isoform (TRβ4) from a human pituitary library. To elucidate the clinical significance of TRβ4, we investigated the expression of this isoform in TSHoma. Methods: RT-PCR was performed to detect TRβ isoforms such as TRβ1, TRβ2, and TRβ4 using RNA obtained from surgically resected TSHoma. The effects of TRβ4 on the TSH gene expression were examined in the transient gene expression experiments. Results: Quantitative analysis using a real-time PCR revealed that relative expression of TRβ4 to TRβ1+2 was higher in three TSHoma than in a prolactinoma or a nonfunctioning pituitary adenoma. TRβ4 construct did not mediate T3-dependent gene regulation but inhibited the negative regulation of TSHα mediated by TRβ1 or TRβ2. Conclusions: Aberrant expression of TRβ4 may partly contribute to the inappropriate secretion of TSH in a TSHoma.


2014 ◽  
Vol 28 (5) ◽  
pp. 745-757 ◽  
Author(s):  
Amy Schroeder ◽  
Robyn Jimenez ◽  
Briana Young ◽  
Martin L. Privalsky

Abstract T4 (3,5,3′,5′-tetraiodo-l-thyronine) is classically viewed as a prohormone that must be converted to the T3 (3,5,3′-triiodo-l-thyronine) form for biological activity. We first determined that the ability of reporter genes to respond to T4 and to T3 differed for the different thyroid hormone receptor (TR) isoforms, with TRα1 generally more responsive to T4 than was TRβ1. The response to T4 vs T3 also differed dramatically in different cell types in a manner that could not be attributed to differences in deiodinase activity or in hormone affinity, leading us to examine the role of TR coregulators in this phenomenon. Unexpectedly, several coactivators, such as steroid receptor coactivator-1 (SRC1) and thyroid hormone receptor-associated protein 220 (TRAP220), were recruited to TRα1 nearly equally by T4 as by T3 in vitro, indicating that TRα1 possesses an innate potential to respond efficiently to T4 as an agonist. In contrast, release of corepressors, such as the nuclear receptor coreceptor NCoRω, from TRα1 by T4 was relatively inefficient, requiring considerably higher concentrations of this ligand than did coactivator recruitment. Our results suggest that cells, by altering the repertoire and abundance of corepressors and coactivators expressed, may regulate their ability to respond to T4, raising the possibility that T4 may function directly as a hormone in specific cellular or physiological contexts.


2020 ◽  
Vol 244 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Ángela Sánchez ◽  
Constanza Contreras-Jurado ◽  
Diego Rodríguez ◽  
Javier Regadera ◽  
Susana Alemany ◽  
...  

Hypothyroidism is often associated with anemia and immunological disorders. Similar defects are found in patients and in mice with a mutated dominant-negative thyroid hormone receptor α (TRα) and in knockout mice devoid of this receptor, suggesting that this isoform is responsible for the effects of the thyroid hormones in hematopoiesis. However, the hematological phenotype of mice lacking also TRβ has not yet been examined. We show here that TRα1/TRβ-knockout female mice, lacking all known thyroid hormone receptors with capacity to bind thyroid hormones, do not have overt anemia and in contrast with hypothyroid mice do not present reduced Gata1 or Hif1 gene expression. Similar to that found in hypothyroidism or TRα deficiency during the juvenile period, the B-cell population is reduced in the spleen and bone marrow of ageing TRα1/TRβ-knockout mice, suggesting that TRβ does not play a major role in B-cell development. However, splenic hypotrophy is more marked in hypothyroid mice than in TRα1/TRβ-knockout mice and the splenic population of T-lymphocytes is not significantly impaired in these mice in contrast with the reduction found in hypothyroidism. Our results show that the overall hematopoietic phenotype of the TRα1/TRβ-knockout mice is milder than that found in the absence of hormone. Although other mechanism/s cannot be ruled out, our results suggest that the unoccupied TRs could have a negative effect on hematopoiesis, likely secondary to repression of hematopoietic gene expression.


Sign in / Sign up

Export Citation Format

Share Document