scholarly journals Adipose Tissue Lipin-1 Expression Is Correlated with Peroxisome Proliferator-Activated Receptor α Gene Expression and Insulin Sensitivity in Healthy Young Men

2008 ◽  
Vol 93 (1) ◽  
pp. 233-239 ◽  
Author(s):  
Jimmy Donkor ◽  
Lauren M. Sparks ◽  
Hui Xie ◽  
Steven R. Smith ◽  
Karen Reue
2021 ◽  
Author(s):  
Fubiao Shi ◽  
Zoltan Simandi ◽  
Laszlo Nagy ◽  
Sheila Collins

AbstractIn addition to their established role to maintain blood pressure and fluid volume, the cardiac natriuretic peptides (NPs) can stimulate adipocyte lipolysis and control the brown fat gene program of nonshivering thermogenesis. The NP “clearance” receptor C (NPRC) functions to clear NPs from the circulation via peptide internalization and degradation and thus is an important regulator of NP signaling and adipocyte metabolism. It is well appreciated that the Nprc gene is highly expressed in adipose tissue and is dynamically regulated with nutrition and environmental changes. However, the molecular basis for how Nprc gene expression is regulated is still poorly understood. Here we identified Peroxisome Proliferator-Activated Receptor gamma (PPARγ) as a transcriptional regulator of Nprc expression in mouse adipocytes. During 3T3-L1 adipocyte differentiation, levels of Nprc expression increase in parallel with PPARγ induction. Rosiglitazone, a classic PPARγ agonist, increases, while siRNA knockdown of PPARγ reduces, Nprc expression in 3T3-L1 adipocytes. We demonstrate that PPARγ controls Nprc gene expression in adipocytes through its long-range distal enhancers. Furthermore, the induction of Nprc expression in adipose tissue during high-fat diet feeding is associated with increased PPARγ enhancer activity. Our findings define PPARγ as a mediator of adipocyte Nprc gene expression and establish a new connection between PPARγ and the control of adipocyte NP signaling in obesity.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
M. Ebrahimi ◽  
M. A. Rajion ◽  
Y. M. Goh ◽  
A. Q. Sazili ◽  
J. T. Schonewille

This study was conducted to determine the effects of feeding oil palm frond silage based diets with added linseed oil (LO) containing highα-linolenic acid (C18:3n-3), namely, high LO (HLO), low LO (LLO), and without LO as the control group (CON) on the fatty acid (FA) composition of subcutaneous adipose tissue and the gene expression of peroxisome proliferator-activated receptor (PPAR)α, PPAR-γ, and stearoyl-CoA desaturase (SCD) in Boer goats. The proportion of C18:3n-3 in subcutaneous adipose tissue was increased (P<0.01) by increasing the LO in the diet, suggesting that the FA from HLO might have escaped ruminal biohydrogenation. Animals fed HLO diets had lower proportions of C18:1 trans-11, C18:2n-6, CLA cis-9 trans-11, and C20:4n-6 and higher proportions of C18:3n-3, C22:5n-3, and C22:6n-3 in the subcutaneous adipose tissue than animals fed the CON diets, resulting in a decreased n-6:n-3 fatty acid ratio (FAR) in the tissue. In addition, feeding the HLO diet upregulated the expression of PPAR-γ(P<0.05) but downregulated the expression of SCD (P<0.05) in the adipose tissue. The results of the present study show that LO can be safely incorporated in the diets of goats to enrich goat meat with potential health beneficial FA (i.e., n-3 FA).


2009 ◽  
Vol 296 (5) ◽  
pp. E1120-E1132 ◽  
Author(s):  
Christelle Veyrat-Durebex ◽  
Xavier Montet ◽  
Manlio Vinciguerra ◽  
Asllan Gjinovci ◽  
Paolo Meda ◽  
...  

The inbred Lou/C rat, originating from the Wistar strain, has been described as a model of resistance to diet-induced obesity, but little is known about its metabolism. Since this knowledge could provide some clues about the etiology of obesity/insulin resistance, this study aimed at characterizing glucose and lipid metabolism in Lou/C vs. Wistar rats. This was achieved by performing glucose and insulin tolerance tests, euglycemic hyperinsulinemic clamps, and characterization of intracellular insulin signaling in skeletal muscle. Substrate-induced insulin secretion was evaluated using perfused pancreas and isolated islets. Finally, body fat composition and the expression of various factors involved in lipid metabolism were determined. Body weight and caloric intake were lower in Lou/C than in Wistar rats, whereas food efficiency was similar. Improved glucose tolerance of Lou/C rats was not related to increased insulin output but was related to improved insulin sensitivity/responsiveness in the liver and in skeletal muscles. In the latter tissue, this was accompanied by improved insulin signaling, as suggested by higher activation of the insulin receptor and of the Akt/protein kinase B pathway. Fat deposition was markedly lower in Lou/C than in Wistar rats, especially in visceral adipose tissue. In the inguinal adipose depot, expression of uncoupling protein-1 was detected in Lou/C but not in Wistar rats, in keeping with a higher expression of peroxisome proliferator-activated receptor-γ coactivator-1 in these animals. The Lou/C rat is a valuable model of spontaneous food restriction with associated improved insulin sensitivity. Independently from its reduced caloric intake, it also exhibits a preferential channeling of nutrients toward utilization rather than storage.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Jose T Muratalla ◽  
Samuel M Lee ◽  
Pablo Remon-Ruiz ◽  
Gregory H Norris ◽  
Jose Cordoba-Chacon

Abstract Pparg is a nuclear receptor that regulates glucose and lipid metabolism. Thiazolidinediones (TZD) are PPARG agonists that may reduce hepatic steatosis through their effects in adipose tissue. However, some studies suggest that expression and activation of hepatocyte Pparg promotes steatosis. In this study, we have assessed the relevance of hepatocyte Pparg, and its TZD-mediated activation in the development and/or reduction of steatosis, with adult-onset hepatocyte-specific Pparg knockout (PpargΔHep) mice. We reported that a single iv injection of AAV8-TBG-Cre in Pparg-floxed mice, knocked out hepatocyte Pparg expression (PpargΔHep mice), and that prevented diet-induced steatosis. In this study, a group of 5 wk-old Pparg-floxed mice were fed a low fat (LF) or a high fat (HF) diet for 7 weeks before generating control and PpargΔHep mice. Then, half of the HF-fed mice in each group were switched to a HF diet supplemented with the TZD Rosiglitazone maleate, for 5 weeks. HF diet induced mild obesity (36.8 +/- 1.4 g of body weight [BW]), while TZD slightly increased BW (41.3 +/- 1.3 g) and insulin sensitivity. Liver weight was not altered in HF-fed mice with or without TZD, and we did not observe any effect induced by PpargΔHep. Due to the mild phenotype observed in this cohort, we generated a 2nd cohort adjusting for age and length of diet. Briefly, 10 wk-old Pparg-floxed mice were fed a LF or HF diet for 16 weeks before generating control and PpargΔHep mice. Then, half of the HF-fed mice in each group were switched to a HF diet supplemented with Rosiglitazone maleate for 7 weeks. In this group of mice, HF diet induced obesity (50.1 +/- 1.05 g BW), and increased liver weight independent of hepatic Pparg expression. TZD treatment exacerbated obesity (62.4 +/- 1.2g BW) and adiposity, but increased insulin sensitivity as compared to mice fed a HF diet without TZD. Interestingly, PpargΔHep mice fed a HF diet with TZD showed enlarged subcutaneous white and brown adipose tissue weight, and a dramatic reduction in liver weight and steatosis as compared to obese control mice treated with TZD. The expression of hepatic Cd36, Cidea, Cidec, and Fabp4 was increased by TZD in a Pparg-dependent manner in HF-fed mice. Altogether, this data suggest that hepatocyte Pparg expression may offset the antisteatogenic actions of TZD in mice with severe obesity. In obese and insulin resistant individuals, TZD-mediated activation of hepatocyte Pparg may exacerbate steatosis.


2020 ◽  
Author(s):  
Supanon Tunim ◽  
Yupin Phasuk ◽  
Samuel E. Aggrey ◽  
Monchai Duangjinda

Abstract Background: Crossbreeding using exotic breeds is usually employed to improve the growth characteristics of indigenous chickens. This mating not only provides growth but affect adversely to fat deposition as well. We studied the growth, abdominal, subcutaneous and intramuscular fat and mRNA expression of peroxisome proliferator-activated receptor (PPAR) α and PPARγ in adipose and muscle tissues of four chicken breeds [Chee breed (CH) (100% Thai native chicken), Kaimook e-san1 (KM1; 50% CH background), Kaimook e-san2 (KM2; 25% CH background), and broiler (BR)]. This study was aim to study role of PPARs on fat deposition in native crossbred chicken.Results: The BR chickens had higher abdominal fat than other breeds (P<0.05) and the KM2 had an abdominal fat percentage higher than KM1 and CH respectively (P<0.05). The intramuscular fat (IMF) of BR was greater than KM1 and CH (P<0.05). In adipose tissue, PPARα transcription expression was different among the chicken breeds. However, there were breed differences in PPARγ gene expression. Study of abdominal fat PPARγ gene expression showed the BR breed, KM1, and KM2 breed significantly greater (P<0.05) than CH. In 8 to 12 weeks of age, the result shows that the PPARγ expression of the CH breed is less than (P<0.05) KM2. The result of PPARs expression in muscle tissue was similar result in adipose tissue.Conclusion: Crossbreeding improved the growth of the Thai native breed, there was also a corresponding increase in carcass fatness. However, there appears to be a relationship between PPARγ expression and fat deposition traits. therefore, PPARγ activity plays a key role in lipid accumulation by up-regulation.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 83-84
Author(s):  
Hector H Salgado ◽  
Marie-France Palin ◽  
Hélène Lapierre ◽  
Aline Remus ◽  
Marie-Pierre Letourneau-Montminy ◽  
...  

Abstract Variations in body fat (BF) among pigs can be associated with differences in insulin sensitivity given the insulin anabolic effect in lipid synthesis. The study objectives were to characterize this association and compare the relative mRNA abundance of genes associated with insulin resistance and de novo lipogenesis in the adipose tissue of fat and lean pigs. Thirty 95 kg pigs, catheterized in the jugular vein, received an oral dose of 1.75 g glucose/kg of BW after 18 hours of fasting. Blood samples were collected at -20, -10, 5, 10, 15, 20, 25, 30, 45, 60, 90, 120, 150, 180, 210, 240, 300 and 360 minutes following glucose ingestion. Insulin sensitivity indexes were calculated and analyzed. The BF (%) was estimated by dual X-ray densitometry. The 8 fattest (22 % BF) and the 8 leanest pigs (17.2 % BF) were used to determine the relative mRNA abundance of studied genes using real-time qPCR analyses. Insulin sensitivity was determined using QUICKI and Matsuda indexes, respectively, and their association with body fat was studied with Spearman correlations. Differences in gene expression and insulin sensitivity between fat and lean pigs were studied with a one-way ANOVA. The QUICKI and Matsuda indexes negatively correlated with BF (r = -0.67 and r = -0.59; P &lt; 0.001). Fat pigs had reduced insulin sensitivity and higher relative mRNA abundance of lipogenic enzymes (ACACA, ACLY, FASN; P &lt; 0.05) than lean pigs. The higher expression level of glucose-6-phosphate dehydrogenase (G6PD) combined with the trend (P &lt; 0.10) of lower expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) in fat pigs may explain part of their reduced insulin sensitivity. These results suggest that an increased BF is associated with reduced insulin sensitivity and greater expression of lipogenic enzymes in pig adipose tissue.


2007 ◽  
Vol 98 (3) ◽  
pp. 497-503 ◽  
Author(s):  
Constance Gayet ◽  
Veronique Leray ◽  
Masayuki Saito ◽  
Brigitte Siliart ◽  
Patrick Nguyen

Visceral adipose tissue and skeletal muscle have central roles in determining whole-body insulin sensitivity. The peroxisome proliferator-activated receptor-γ (PPARγ) is a potential mediator of insulin sensitivity. It can directly modulate the expression of genes that are involved in glucose and lipid metabolism, including GLUT4, lipoprotein lipase (LPL) and adipocytokines (leptin and adiponectin). In this study, we aimed to determine the effects of obesity-associated insulin resistance on mRNA expression of PPARγ and its target genes. Dogs were studied when they were lean and at the end of an overfeeding period when they had reached a steady obese state. The use of a sensitive, real-time PCR assay allowed a relative quantification of mRNA expression for PPARγ, LPL, GLUT4, leptin and adiponectin, in adipose tissue and skeletal muscle. In visceral adipose tissue and/or skeletal muscle, mRNA expression of PPARγ, LPL and GLUT4 were at least 2-fold less in obese and insulin-resistant dogs compared with the same animals when they were lean and insulin-sensitive. The mRNA expression and plasma concentration of leptin was increased, whereas the plasma level and mRNA expression of adiponectin was decreased, by obesity. In adipose tissue, PPARγ expression was correlated with leptin and adiponectin. These findings, in an original model of obesity induced by a prolonged period of overfeeding, showed that insulin resistance is associated with a decrease in PPARγ mRNA expression that could dysregulate expression of several genes involved in glucose and lipid metabolism.


2020 ◽  
Author(s):  
Rafael Ferraz-Bannitz ◽  
Caroline Rossi Welendorf ◽  
Priscila Oliveira Coelho ◽  
Wilson Salgado ◽  
Carla Barbosa Nonino ◽  
...  

Abstract Background Bariatric surgery, especially Roux-en-Y gastric bypass (RYGB) is the most effective and durable treatment option for population with severe obesity. The mechanisms involving adipose tissue may be important to explain the effects of surgery. Methods We aimed to identify the genetic signatures of adipose tissue in patients undergoing RYGB. We evaluated 13 obese, non-diabetic patients (mean age 37 years, 100% women, Body mass index (BMI) 42.2 kg/m2) one day before surgery, 3 and 6 months (M) after RYGB. Results Analysis of gene expression in adipose tissue collected at surgery compared with samples collected at 3M and 6M Post-RYGB showed that interleukins (Interleukin 6, Tumor necrosis factor-α (TNF-α), and Monocyte chemoattractant protein-1(MCP1)) and endoplasmic reticulum stress (ERS) genes (Eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3) and Calreticulin (CALR)) decreased during the follow-up (P ≤ 0.01 for all). Otherwise, genes involved in energy homeostasis (Adiponectin and AMP-activated protein kinase (AMPK)), cellular response to oxidative stress (Sirtuin 1, Sirtuin 3, and Nuclear factor erythroid 2-related factor 2 (NRF2)), mitochondrial biogenesis (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)) and amino acids metabolism (General control nonderepressible 2 (GCN2)) increased from baseline to all other time points evaluated (P ≤ 0.01 for all). Also, expression of Peroxisome proliferator activated receptor gamma (PPARϒ) (adipogenesis regulation) was significantly decreased after RYGB (P < 0.05) We also observed a strong positive correlation between PGC1α, SIRT1 and AMPK with BMI at 3M (P ≤ 0.01 for all) and ADIPOQ and SIRT1 with BMI at 6M (P ≤ 0.01 for all). Conclusions Our findings demonstrate that weight loss is associated with amelioration of inflammation and ERS and increased protection against oxidative stress in adipose tissue. These observations are strongly correlated with a decrease in BMI and essential genes that control cellular energy homeostasis, suggesting an adaptive process on a gene expression level during the caloric restriction and weight loss period after RYGB.


Sign in / Sign up

Export Citation Format

Share Document