scholarly journals Growth Hormone Signaling in Vivo in Human Muscle and Adipose Tissue: Impact of Insulin, Substrate Background, and Growth Hormone Receptor Blockade

2008 ◽  
Vol 93 (7) ◽  
pp. 2842-2850 ◽  
Author(s):  
Charlotte Nielsen ◽  
Lars C. Gormsen ◽  
Niels Jessen ◽  
Steen Bønløkke Pedersen ◽  
Niels Møller ◽  
...  

Abstract Context: GH induces insulin resistance in muscle and fat, and in vitro data indicate that this may involve cross-talk between the signaling pathways of the two hormones. Objective: Our objective was to investigate GH and insulin signaling in vivo in human muscle and fat tissue in response to GH, GH receptor blockade, and insulin stimulation. Design: We conducted two randomized crossover studies. Participants: Sixteen healthy males participated. Intervention: GH was administered as a bolus (n = 8) and constant infusion (n = 8). The bolus study included three arms: 1) control (saline), 2) GH (0.5 mg iv), and 3) GH blockade (pegvisomant 30 mg sc), each combined with a hyperinsulinemic glucose clamp. The infusion study included two arms: 1) GH infusion (45 ng/·kg·min, 5.5 h) and 2) saline infusion (5.5 h) combined with a hyperinsulinemic glucose clamp during the final 2.5 h. Main Outcome Measures: Muscle and fat biopsies were subjected to Western blotting for expression of Stat5/p-Stat5, Akt/p-Akt, and ERK1/2/p-ERK1/2 and to real-time RT-PCR for expression of SOCS1–3 and IGF-I mRNA. Results: GH significantly reduced insulin sensitivity. The GH bolus as well as GH infusion induced phosphorylation of Stat5 in muscle and fat, and SOCS3 and IGF-I mRNA expression increased after GH infusion. Hyperinsulinemia induced Akt phosphorylation in both tissues, irrespective of GH status. In muscle, ERK1/2 phosphorylation was increased by insulin, but insulin per se did not induce phosphorylation of Stat5. Conclusions: GH exposure associated with insulin resistance acutely translates into GH receptor signaling in human muscle and fat without evidence of cross-talk with insulin signaling pathways. The molecular mechanisms subserving GH-induced insulin resistance in humans remain unclarified.

2006 ◽  
Vol 16 ◽  
pp. S5
Author(s):  
Charlotte Nielsen ◽  
Lars Christian Gormsen ◽  
Niels Jessen ◽  
Steen B Pedersen ◽  
Nils Billestrup ◽  
...  

2019 ◽  
Vol 316 (2) ◽  
pp. E333-E344 ◽  
Author(s):  
Morten Lyng Høgild ◽  
Ann Mosegaard Bak ◽  
Steen Bønløkke Pedersen ◽  
Jørgen Rungby ◽  
Jan Frystyk ◽  
...  

Growth hormone (GH) levels are blunted in obesity, but it is not known whether this relates to altered GH sensitivity and whether this influences the metabolic adaptation to fasting. Therefore, we investigated the effect of obesity on GH signal transduction and fasting-induced changes in GH action. Nine obese (BMI 35.7 kg/m2) and nine lean (BMI 21.5 kg/m2) men were studied in a randomized crossover design with 1) an intravenous GH bolus, 2) an intravenous saline bolus, and 3) 72 h of fasting. Insulin sensitivity (hyperinsulinemic, euglycemic clamp) and substrate metabolism (glucose tracer and indirect calorimetry) were measured in studies 1 and 2. In vivo GH signaling was assessed in muscle and fat biopsies. GH pharmacokinetics did not differ between obese and lean subjects, but endogenous GH levels were reduced in obesity. GH signaling (STAT5b phosphorylation and CISH mRNA transcription), and GH action (induction of lipolysis and peripheral insulin resistance) were similar in the two groups, but a GH-induced insulin antagonistic effect on endogenous glucose production only occurred in the obese. Fasting-induced IGF-I reduction was completely abrogated in obese subjects despite a comparable relative increase in GH levels (ΔIGF-I: lean, −66 ± 10 vs. obese, 27 ± 16 µg/l; P < 0.01; ΔGH: lean, 647 ± 280 vs. obese, 544 ± 220%; P = 0.76]. We conclude that 1) GH signaling is normal in obesity, 2) in the obese state, the preservation of IGF-I with fasting and the augmented GH-induced central insulin resistance indicate increased hepatic GH sensitivity, 3) blunted GH levels in obesity may protect against insulin resistance without compromising IGF-I status.


Reproduction ◽  
2008 ◽  
Vol 136 (3) ◽  
pp. 335-344 ◽  
Author(s):  
Erica Louden ◽  
Maggie M Chi ◽  
Kelle H Moley

Maternal insulin resistance results in poor pregnancy outcomes. In vivo and in vitro exposure of the murine blastocyst to high insulin or IGF1 results in the down-regulation of the IGF1 receptor (IGF1R). This in turn leads to decreased glucose uptake, increased apoptosis, as well as pregnancy resorption and growth restriction. Recent studies have shown that blastocyst activation of AMP-activated protein kinase (AMPK) reverses these detrimental effects; however, the mechanism was not clear. The objective of this study was to determine how AMPK activation rescues the insulin-resistant blastocyst. Using trophoblast stem (TS) cells derived from the blastocyst, insulin resistance was recreated by transfecting with siRNA to Igf1r and down-regulating expression of the protein. These cells were then exposed to AMPK activators 5-aminoimidazole-4-carboxamide riboside and phenformin, and evaluated for apoptosis, insulin-stimulated 2-deoxyglucose uptake, PI3-kinase activity, and levels of phospho-AKT, phospho-mTor, and phospho-70S6K. Surprisingly, disrupted insulin signaling led to decreased AMPK activity in TS cells. Activators reversed these effects by increasing the AMP/ATP ratio. Moreover, this treatment increased insulin-stimulated 2-deoxyglucose transport and cell survival, and led to an increase in PI3-kinase activity, as well as increased P-mTOR and p70S6K levels. This study is the first to demonstrate significant crosstalk between the AMPK and insulin signaling pathways in embryonic cells, specifically the enhanced response of PI3K/AKT/mTOR to AMPK activation. Decreased insulin signaling also resulted in decreased AMPK activation. These findings provide mechanistic targets in the AMPK signaling pathway that may be essential for improved pregnancy success in insulin-resistant states.


2001 ◽  
Vol 94 (3) ◽  
pp. 487-492 ◽  
Author(s):  
Ian E. McCutcheon ◽  
Allan Flyvbjerg ◽  
Holly Hill ◽  
Jessica Li ◽  
William F. Bennett ◽  
...  

Object. The authors have previously demonstrated that modulation of the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis can significantly affect meningioma growth in vitro. These studies were performed to evaluate the efficacy of GH receptor blockade in vivo. Methods. Primary cultures from 15 meningioma tumors obtained in humans were xenografted into athymic mice. Approximately 1.5 million cells from each of the 15 tumors were implanted into the flanks of two female mice, one pair for each tumor. One animal from each of the 15 pairs was then treated with the GH receptor antagonist pegvisomant and the other with vehicle alone for 8 weeks. The tumor volume was measured using digital calipers three times per week. The mean tumor volume at the initiation of injections was 284 ± 18.8 mm3 in the vehicle group and 291.1 ± 20 mm3 in the pegvisomant group. After 8 weeks of treatment, the mean volume of tumors in the pegvisomant group was 198.3 ± 18.9 mm3 compared with 350.1 ± 23.5 mm3 for the vehicle group (p < 0.001). The serum IGF-I concentration in the vehicle group was 319 ± 12.9 µg/L compared with 257 ± 9.7 in the pegvisomant group (p < 0.02). A small but significant decrease was observed in circulating IGF binding protein (IGFBP)—3 levels, whereas slight increases occurred with respect to serum IGFBP-1 and IGFBP-4 levels. In the placebo group the tumor weight was 0.092 ± 0.01 g compared with 0.057 ± 0.01 g in the pegvisomant group (p < 0.02). The IGF-I and IGF-II concentrations were measured in the tumors by using a tissue extraction method. These human-specific immunoassays demonstrated that there was no autocrine production of IGF-I in any of the tumors, either in the pegvisomant or vehicle group. The IGF-II levels were highly variable (0–38.2 ng/g tissue) and did not differ significantly between treatment groups. Conclusions. In an in vivo tumor model, downregulation of the GH/IGF-I axis significantly reduces meningioma growth and, in some instances, causes tumor regression. Because the concentrations of IGF-II in tumor did not vary with pegvisomant treatment and there was no autocrine IGF-I production by the tumors, the mechanism of the antitumor effect is most likely a decrease of IGF-I in the circulation and/or surrounding host tissues. Because the authors have previously demonstrated that the GH receptor is ubiquitously expressed in meningiomas, direct blockade of the GH receptor on the tumors may also be contributing to inhibitory actions.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1376
Author(s):  
Marina Caputo ◽  
Stella Pigni ◽  
Emanuela Agosti ◽  
Tommaso Daffara ◽  
Alice Ferrero ◽  
...  

Growth hormone (GH) and insulin-like growth factor-1 (IGF-I) are pleiotropic hormones with important roles in lifespan. They promote growth, anabolic actions, and body maintenance, and in conditions of energy deprivation, favor catabolic feedback mechanisms switching from carbohydrate oxidation to lipolysis, with the aim to preserve protein storages and survival. IGF-I/insulin signaling was also the first one identified in the regulation of lifespan in relation to the nutrient-sensing. Indeed, nutrients are crucial modifiers of the GH/IGF-I axis, and these hormones also regulate the complex orchestration of utilization of nutrients in cell and tissues. The aim of this review is to summarize current knowledge on the reciprocal feedback among the GH/IGF-I axis, macro and micronutrients, and dietary regimens, including caloric restriction. Expanding the depth of information on this topic could open perspectives in nutrition management, prevention, and treatment of GH/IGF-I deficiency or excess during life.


1992 ◽  
Vol 126 (2) ◽  
pp. 155-161 ◽  
Author(s):  
Geoffrey R Ambler ◽  
Bernhard H Breier ◽  
Andrzej Surus ◽  
Hugh T Blair ◽  
Stuart N McCutcheon ◽  
...  

We evaluated the interrelationship between, and regulation of, the hepatic growth hormone receptor and serum GH binding protein (GH BP) in pigs treated with recombinant porcine growth hormone (rpGH). Infant and pubertal male pigs (N = 5 per group) received either rpGH 0.15 mg/kg daily or diluent intramuscularly for 12 days. Somatic growth, serum IGF-I and GH BP and [125I]bovine GH (bGH) binding to MgCl2-treated hepatic membrane homogenates were examined. Marked age-related increases were seen in serum GH BP (p<0.001) and [125I]bGH binding to hepatic membranes (p<0.001). GH BP was increased in rpGH treated animals (p = 0.03), from 13.8±1.2 (mean±1 x sem) (controls) to 17.8±2.0% in infants, and from 35.2±2.6 (controls) to 41.8±3.4% in pubertal animals. [125I]bGH binding to hepatic membranes was also increased by rpGH treatment (p<0.05), from 7.0±1.6 (controls) to 15.4±3.6% in infants and from 53.7±7.1 (controls) to 65.1±11.8% in pubertal animals. No significant interaction between age and treatment was seen. Overall, serum GH BP correlated significantly with [125I]bGH membrane capacity (r=0.82, p<0.001), with a correlation of r= 0.83 in the infant animals but no significant correlation in the pubertal animals considered alone (r=0.13). Serum IGF-I correlated significantly with serum GH BP (r=0.93, p<0.001) and [125]bGH membrane binding capacity (r = 0.91, p< 0.001). These observations suggest that serum GH BP levels reflect major changes of hepatic GH receptor status. In addition, the present study demonstrates that the hepatic GH receptor can be induced by GH in the infant pig, despite a developmentally low GH receptor population at this age, suggesting potential efficacy of GH at earlier ages than generally considered.


2017 ◽  
Vol 114 (40) ◽  
pp. E8478-E8487 ◽  
Author(s):  
Masahiro Konishi ◽  
Masaji Sakaguchi ◽  
Samuel M. Lockhart ◽  
Weikang Cai ◽  
Mengyao Ella Li ◽  
...  

Insulin receptors (IRs) on endothelial cells may have a role in the regulation of transport of circulating insulin to its target tissues; however, how this impacts on insulin action in vivo is unclear. Using mice with endothelial-specific inactivation of the IR gene (EndoIRKO), we find that in response to systemic insulin stimulation, loss of endothelial IRs caused delayed onset of insulin signaling in skeletal muscle, brown fat, hypothalamus, hippocampus, and prefrontal cortex but not in liver or olfactory bulb. At the level of the brain, the delay of insulin signaling was associated with decreased levels of hypothalamic proopiomelanocortin, leading to increased food intake and obesity accompanied with hyperinsulinemia and hyperleptinemia. The loss of endothelial IRs also resulted in a delay in the acute hypoglycemic effect of systemic insulin administration and impaired glucose tolerance. In high-fat diet-treated mice, knockout of the endothelial IRs accelerated development of systemic insulin resistance but not food intake and obesity. Thus, IRs on endothelial cells have an important role in transendothelial insulin delivery in vivo which differentially regulates the kinetics of insulin signaling and insulin action in peripheral target tissues and different brain regions. Loss of this function predisposes animals to systemic insulin resistance, overeating, and obesity.


1994 ◽  
Vol 266 (5) ◽  
pp. E776-E785 ◽  
Author(s):  
P. A. Weller ◽  
M. J. Dauncey ◽  
P. C. Bates ◽  
J. M. Brameld ◽  
P. J. Buttery ◽  
...  

Regulation of insulin-like growth factor I (IGF-I) and growth hormone (GH) receptor mRNA in liver and muscle by energy status was assessed in 2-mo-old pigs by altering thermoregulatory demand and energy intake over a 5-wk period to produce a range of plasma IGF-I concentrations from 3.5 +/- 0.7 to 28.9 +/- 6.2 nmol/l. These values were related directly to growth rates (0.06 +/- 0.02 to 0.44 +/- 0.01 kg/day) and total hepatic IGF-I mRNA levels. Increased growth rates were accompanied by an increase in hepatic class 1 and class 2 IGF-I mRNA levels and an increase in the ratio of class 2 to class 1 IGF-I mRNA in liver, suggesting a distinct role for class 2 expression in the endocrine growth response. High levels of class 1 transcripts and a virtual absence of class 2 transcripts characterized all muscle tissues examined, and there was no correlation with plasma IGF-I levels. This suggests that growth promotion in response to increased energy status is regulated via endocrine hepatic IGF-I rather than via a paracrine response. The levels of GH receptor mRNA were positively correlated with overall growth rate (P < 0.005) in liver and negatively correlated (P < 0.05) in muscle, indicating distinct tissue-specific effects of energy status.


2018 ◽  
Vol 239 (3) ◽  
pp. 289-301 ◽  
Author(s):  
Rita Sharma ◽  
Quyen Luong ◽  
Vishva M Sharma ◽  
Mitchell Harberson ◽  
Brian Harper ◽  
...  

Growth hormone (GH) has long been known to stimulate lipolysis and insulin resistance; however, the molecular mechanisms underlying these effects are unknown. In the present study, we demonstrate that GH acutely induces lipolysis in cultured adipocytes. This effect is secondary to the reduced expression of a negative regulator of lipolysis, fat-specific protein 27 (FSP27; aka Cidec) at both the mRNA and protein levels. These effects are mimicked in vivo as transgenic overexpression of GH leads to a reduction of FSP27 expression. Mechanistically, we show GH modulation of FSP27 expression is mediated through activation of both MEK/ERK- and STAT5-dependent intracellular signaling. These two molecular pathways interact to differentially manipulate peroxisome proliferator-activated receptor gamma activity (PPARγ) on the FSP27 promoter. Furthermore, overexpression of FSP27 is sufficient to fully suppress GH-induced lipolysis and insulin resistance in cultured adipocytes. Taken together, these data decipher a molecular mechanism by which GH acutely regulates lipolysis and insulin resistance in adipocytes.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ruoyun Wu ◽  
Tunyu Jian ◽  
Xiaoqin Ding ◽  
Han Lv ◽  
Xiuhua Meng ◽  
...  

Loquat (Eriobotrya japonica Lindl.), a subtropical fruit tree native to Asia, is not only known to be nutritive but also beneficial for the treatment of diabetes in the south of China. To expand its development, this study was undertaken concerning the potential therapeutic role of total sesquiterpene glycosides (TSGs) from loquat leaves in insulin resistance (IR), the major causative factor of type 2 diabetes mellitus (T2DM). Male C57BL/6 mice were fed on high-fat diet (HFD) to induce IR and then were given TSG by oral administration at 25 and 100 mg/kg/day, respectively. TSG notably improved metabolic parameters including body weight, serum glucose, and insulin levels and prevented hepatic injury. Moreover, inflammatory response and oxidative stress were found to be remarkably alleviated in IR mice with TSG supplement. Further research in liver of IR mice demonstrated that TSG repaired the signalings of insulin receptor substrate-1 (IRS-1)/glucose transporter member 4 (GLUT4) and AMP-activated protein kinase (AMPK), which improved glucose and lipid metabolism and prevented lipid accumulation in liver. It was also observed that TSG suppressed the expression of transient receptor potential vanilloid 1 (TRPV1), whereas the signaling pathway of sirtuin-6 (SIRT6)/nuclear factor erythroid 2-related factor 2 (Nrf2) was significantly promoted. Based on the results, the current study demonstrated that TSG from loquat leaves potentially ameliorated IR in vivo by enhancing IRS-1/GLUT4 signaling and AMPK activation and modulating TRPV1 and SIRT6/Nrf2 signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document