scholarly journals Role of the Basic Helix-Loop-Helix Transcription Factor, Scleraxis, in the Regulation of Sertoli Cell Function and Differentiation

2005 ◽  
Vol 19 (8) ◽  
pp. 2164-2174 ◽  
Author(s):  
Tera Muir ◽  
Ingrid Sadler-Riggleman ◽  
Michael K. Skinner

Abstract Sertoli cells are a postmitotic terminally differentiated cell population in the adult testis that form the seminiferous tubules and provide the microenvironment and structural support for developing germ cells. The transcription factors that regulate Sertoli cell differentiation remain to be elucidated. The basic helix-loop-helix transcription factors are involved in the differentiation of a variety of cell lineages during development and are expressed in pubertal Sertoli cells. A yeast-two-hybrid procedure was used to screen a Sertoli cell library from 20-d-old pubertal rats to identify dimerization partners with the ubiquitous E47 basic helix-loop-helix transcription factor. Scleraxis was identified as one of the interacting partners. Among the cell types of the testis, scleraxis expression was found to be specific to Sertoli cells. Analysis of the expression pattern of scleraxis mRNA in developing Sertoli cells revealed an increase in scleraxis message at the onset of puberty. Sertoli cells respond to FSH to promote expression of differentiated gene products such as transferrin that aid in proper development of the germ cells. Analysis of the hormonal regulation of scleraxis expression revealed a 4-fold increase in scleraxis mRNA in response to the presence of FSH or dibutryl cAMP in cultured Sertoli cells. An antisense oligonucleotide procedure and overexpression analysis were used to determine whether scleraxis regulates the expression of Sertoli cell differentiated gene products. An antisense oligonucleotide to scleraxis down-regulated transferrin promoter activity in Sertoli cells. A transient overexpression of scleraxis in Sertoli cells stimulated transferrin and androgen binding protein promoter activities and the expression of a number of differentiated genes. Observations suggest scleraxis functions in a number of adult tissues and is involved in the regulation and maintenance of Sertoli cell function and differentiation. This is one of the first adult and nontendon/chondrocyte-associated functions described for scleraxis.

Development ◽  
1994 ◽  
Vol 120 (7) ◽  
pp. 1759-1766 ◽  
Author(s):  
K. Yomogida ◽  
H. Ohtani ◽  
H. Harigae ◽  
E. Ito ◽  
Y. Nishimune ◽  
...  

GATA-1 is an essential factor for the transcriptional activation of erythroid-specific genes, and is also abundantly expressed in a discrete subset of cells bordering the seminiferous epithelium in tubules of the murine testis. In examining normal and germ-line defective mutant mice, we show here that GATA-1 is expressed only in the Sertoli cell lineage in mouse testis. GATA-1 expression in Sertoli cells is induced concomitantly with the first wave of spermatogenesis, and GATA-1-positive cells are uniformly distributed among all tubules during prepubertal testis development. However, the number of GATA-1-positive cells declines thereafter and were found only in the peripheral zone of seminiferous tubules in stages VII, VIII and IX of spermatogenesis in the adult mouse testis. In contrast, virtually every Sertoli cell in mutant W/Wv, jsd/jsd or cryptorchid mice (all of which lack significant numbers of germ cells) expresses GATA-1, thus showing that the expression of this transcription factor is negatively controlled by the maturing germ cells. These observations suggest that transcription factor GATA-1 is a developmental stage- and spermatogenic cycle-specific regulator of gene expression in Sertoli cells.


2021 ◽  
Vol 22 (13) ◽  
pp. 7152
Author(s):  
Yaqi Hao ◽  
Xiumei Zong ◽  
Pan Ren ◽  
Yuqi Qian ◽  
Aigen Fu

The basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor gene families in Arabidopsis thaliana, and contains a bHLH motif that is highly conserved throughout eukaryotic organisms. Members of this family have two conserved motifs, a basic DNA binding region and a helix-loop-helix (HLH) region. These proteins containing bHLH domain usually act as homo- or heterodimers to regulate the expression of their target genes, which are involved in many physiological processes and have a broad range of functions in biosynthesis, metabolism and transduction of plant hormones. Although there are a number of articles on different aspects to provide detailed information on this family in plants, an overall summary is not available. In this review, we summarize various aspects of related studies that provide an overview of insights into the pleiotropic regulatory roles of these transcription factors in plant growth and development, stress response, biochemical functions and the web of signaling networks. We then provide an overview of the functional profile of the bHLH family and the regulatory mechanisms of other proteins.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1691
Author(s):  
Rong-Ge Yan ◽  
Qi-Lin Yang ◽  
Qi-En Yang

In the mammalian testes, Sertoli cells are the only somatic cells in the seminiferous tubules that provide structural, nutritional and regulatory support for developing spermatogenic cells. Sertoli cells only proliferate during the fetal and neonatal periods and enter a quiescent state after puberty. Functional evidences suggest that the size of Sertoli cell population determines sperm production and fertility. However, factors that direct Sertoli cell proliferation and maturation are not fully understood. Transcription factor E4F1 is a multifunctional protein that serves essential roles in cell fate decisions and because it interacts with pRB, a master regulator of Sertoli cell function, we hypothesized that E4F1 may have a functional role in Sertoli cells. E4f1 mRNA was present in murine testis and immunohistochemical staining confirmed that E4F1 was enriched in mature Sertoli cells. We generated a conditional knockout mouse model using Amh-cre and E4f1flox/flox lines to study E4F1 fucntion in Sertoli cells and the results showed that E4f1 deletion caused a significant reduction in testis size and fertility. Further analyses revealed that meiosis progression and spermiogenesis were normal, however, Sertoli cell proliferation was impaired and germ cell apoptosis was elevated in the testis of E4f1 conditional knockout mice. On the basis of these findings, we concluded that E4F1 was expressed in murine Sertoli cells and served important functions in regulating Sertoli cell proliferation and fertility.


Endocrinology ◽  
1997 ◽  
Vol 138 (2) ◽  
pp. 667-675 ◽  
Author(s):  
Jaideep Chaudhary ◽  
Andrea S. Cupp ◽  
Michael K. Skinner

Abstract Sertoli cells are critical for testicular function and maintenance of the spermatogenic process. The induction of Sertoli cell differentiation in the embryo promotes testicular development and male sex determination. The progression of Sertoli cell differentiation during puberty promotes the onset of spermatogenesis. The maintenance of optimal Sertoli cell differentiation in the adult is required for spermatogenesis to proceed. The current study was designed to investigate the transcriptional regulation of Sertoli cell differentiation through the analysis of a previously identified marker of differentiation, transferrin gene expression. Sertoli cells produce transferrin to transport iron to developing spermatogenic cells sequestered within the blood-testis barrier. The transferrin promoter was characterized and found to contain two critical response elements, designated Sertoli element 1 (SE1) and Sertoli element 2 (SE2). Through sequence analysis, SE2 was found to contain an E-box response element, which has been shown to respond to basic-helix-loop-helix (bHLH) transcription factors. The bHLH proteins are a class of transcription factors associated with the induction and progression of cell differentiation. bHLH proteins dimerize through the conserved helix-loop-helix region and bind DNA through the basic region. Nuclear extracts from Sertoli cells were found to cause an E-box gel shift when the cells were stimulated to differentiate in culture, but not under basal conditions. The SE2 gel shift of Sertoli nuclear extracts was competed with excess unlabeled SE2 or E-box DNA fragments. Several Sertoli nuclear proteins associate with the SE2 gel shifts, including 70-, 42-, and 25-kDa proteins. Therefore, the critical SE2 element in the transferrin promoter is an E-box element capable of binding bHLH transcription factors. The ubiquitously expressed E12 bHLH protein dimerizes with numerous cell-specific bHLH factors. A Western blot analysis demonstrated that E12 was present in Sertoli cell nuclear extracts and associated with the SE2 gel shift. A ligand blot of Sertoli cell nuclear extracts with radiolabeled E12 had apparent bHLH proteins when the cells were stimulated to differentiate. The E-box sequence in the SE2 fragment of the transferrin promoter was CATCTG and was similar in gel shifts to the consensus E-box elements (CANNTG) previously characterized. A bHLH inhibitory factor (Id) competed and inhibited formation of the Sertoli cell nuclear extract E-box gel shift. To extend this observation, Id protein was overexpressed in cultured Sertoli cells. A transferrin promoter chloramphenicol acetyltransferase construct was used to monitor Sertoli cell function. The presence of Id suppressed the activation of the promoter induced by Sertoli differentiation factors. Therefore, the inhibition of Sertoli bHLH factors by Id suppressed Sertoli cell differentiated function, as measured by transferrin expression. An E-box-chloramphenicol acetyltransferase construct was also found to be active in Sertoli cells when cells were induced to differentiate. Screening the computerized nucleotide data bases demonstrated that putative E-box response elements are present in the promoters of a large number of Sertoli cell differentiated genes. In summary, a critical E-box response element has been identified in the transferrin promoter that can be activated by bHLH factors (e.g. E12) present in Sertoli cells. Inhibition of Sertoli bHLH factors by Id suppresses Sertoli cell differentiated function (i.e. transferrin expression), suggesting that bHLH transcription factors may be important in regulating Sertoli cell differentiated functions.


2019 ◽  
Vol 48 (2) ◽  
pp. 934-948 ◽  
Author(s):  
Vivian Pogenberg ◽  
Josué Ballesteros-Álvarez ◽  
Romana Schober ◽  
Ingibjörg Sigvaldadóttir ◽  
Agnieszka Obarska-Kosinska ◽  
...  

Abstract Interrupted dimeric coiled coil segments are found in a broad range of proteins and generally confer selective functional properties such as binding to specific ligands. However, there is only one documented case of a basic-helix–loop–helix leucine zipper transcription factor—microphthalmia-associated transcription factor (MITF)—in which an insertion of a three-residue stammer serves as a determinant of conditional partner selectivity. To unravel the molecular principles of this selectivity, we have analyzed the high-resolution structures of stammer-containing MITF and an engineered stammer-less MITF variant, which comprises an uninterrupted symmetric coiled coil. Despite this fundamental difference, both MITF structures reveal identical flanking in-phase coiled coil arrangements, gained by helical over-winding and local asymmetry in wild-type MITF across the stammer region. These conserved structural properties allow the maintenance of a proper functional readout in terms of nuclear localization and binding to specific DNA-response motifs regardless of the presence of the stammer. By contrast, MITF heterodimer formation with other bHLH-Zip transcription factors is only permissive when both factors contain either the same type of inserted stammer or no insert. Our data illustrate a unique principle of conditional partner selectivity within the wide arsenal of transcription factors with specific partner-dependent functional readouts.


2020 ◽  
Vol 103 (4) ◽  
pp. 880-891
Author(s):  
Phillip A Thomas ◽  
Eric D Schafler ◽  
Sophie E Ruff ◽  
Maud Voisin ◽  
Susan Ha ◽  
...  

Abstract Spermatogenesis is a complex process that establishes male fertility and involves proper communication between the germline (spermatozoa) and the somatic tissue (Sertoli cells). Many factors that are important for spermatozoa production are also required for Sertoli cell function. Recently, we showed that the transcriptional cofactor ubiquitously expressed transcript (UXT) encodes a protein that is essential in germ cells for spermatogenesis and fertility. However, the role of UXT within Sertoli cells and how it affects Sertoli cell function was still unclear. Here we describe a novel role for UXT in the Sertoli cell’s ability to support spermatogenesis. We find that the conditional deletion of Uxt in Sertoli cells results in smaller testis size and weight, which coincided with a loss of germ cells in a subset of seminiferous tubules. In addition, the deletion of Uxt has no impact on Sertoli cell abundance or maturity, as they express markers of mature Sertoli cells. Gene expression analysis reveals that the deletion of Uxt in Sertoli cells reduces the transcription of genes involved in the tight junctions of the blood–testis barrier (BTB). Furthermore, tracer experiments and electron microscopy reveal that the BTB is permeable in UXT KO animals. These findings broaden our understanding of UXT’s role in Sertoli cells and its contribution to the structural integrity of the BTB.


2002 ◽  
pp. 801-806 ◽  
Author(s):  
C Foresta ◽  
A Bettella ◽  
E Moro ◽  
M Rossato ◽  
M Merico ◽  
...  

OBJECTIVE: The DAZ (deleted in azoospermia) gene family on the Y chromosome long arm is the major candidate for the AZFc (azoospermia factor c) phenotype of male infertility and it is expressed only in germ cells. The aim of the study was to assess Sertoli cell function in subjects with AZFc deletions. DESIGN: Case-control, prospective study. METHODS: We have studied six severely oligozoospermic subjects with AZFc-DAZ deletions, and looked whether they responded in terms of inhibin B production to a 1 month FSH treatment. These patients were compared with three groups of patients affected by different spermatogenic alterations not related to deletions on the Y chromosome. RESULTS: Although affected by severe testiculopathy, patients with AZFc-DAZ deletions had only slightly elevated FSH, and normal inhibin B plasma concentrations. Inhibin B responded normally during FSH treatment, supporting the hypothesis that Sertoli cells are not altered. On the contrary, other severe testiculopathies not related to Y chromosome deletions showed high FSH and low inhibin B concentrations, with no response to FSH treatment. In these cases the cause of the spermatogenic defect probably damaged both germ and Sertoli cells. Finally, idiopathic patients with a hormonal status similar to Y-deleted patients (slightly elevated FSH and normal inhibin B concentrations) did not respond to FSH treatment, suggesting that Sertoli cells were already at their maximal functional capability. CONCLUSIONS: These data confirm that Sertoli cell function is not damaged in patients with AZFc-DAZ deletions and that the strong reduction of germ cells does not affect the FSH-inhibin B feedback loop.


2010 ◽  
Vol 30 (14) ◽  
pp. 3661-3671 ◽  
Author(s):  
Wei Hu ◽  
Lyn Gauthier ◽  
Boris Baibakov ◽  
Maria Jimenez-Movilla ◽  
Jurrien Dean

ABSTRACT Maintenance of sex-specific germ cells requires balanced activation and repression of genetic hierarchies to ensure gender-appropriate development in mammals. Figla (factor in the germ line, alpha) encodes a germ cell-specific basic helix-loop-helix transcription factor first identified as an activator of oocyte genes. In comparing the ovarian proteome of normal and Figla null newborn mice, 18 testis-specific or -enhanced proteins were identified that were more abundant in Figla null ovaries than in normal ovaries. Transgenic mice, ectopically expressing Figla in male germ cells, downregulated a subset of these genes and demonstrated age-related sterility associated with impaired meiosis and germ cell apoptosis. Testis-associated genes, including Tdrd1, Tdrd6, and Tdrd7, were suppressed in the transgenic males with a corresponding disruption of the sperm chromatoid body and mislocalization of MVH and MILI proteins, previously implicated in posttranscriptional processing of RNA. These data demonstrate that physiological expression of Figla plays a critical dual role in activation of oocyte-associated genes and repression of sperm-associated genes during normal postnatal oogenesis.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009688
Author(s):  
Tadashi Yamamuro ◽  
Shuhei Nakamura ◽  
Yu Yamano ◽  
Tsutomu Endo ◽  
Kyosuke Yanagawa ◽  
...  

Autophagy degrades unnecessary proteins or damaged organelles to maintain cellular function. Therefore, autophagy has a preventive role against various diseases including hepatic disorders, neurodegenerative diseases, and cancer. Although autophagy in germ cells or Sertoli cells is known to be required for spermatogenesis and male fertility, it remains poorly understood how autophagy participates in spermatogenesis. We found that systemic knockout mice of Rubicon, a negative regulator of autophagy, exhibited a substantial reduction in testicular weight, spermatogenesis, and male fertility, associated with upregulation of autophagy. Rubicon-null mice also had lower levels of mRNAs of Sertoli cell–related genes in testis. Importantly, Rubicon knockout in Sertoli cells, but not in germ cells, caused a defect in spermatogenesis and germline stem cell maintenance in mice, indicating a critical role of Rubicon in Sertoli cells. In mechanistic terms, genetic loss of Rubicon promoted autophagic degradation of GATA4, a transcription factor that is essential for Sertoli cell function. Furthermore, androgen antagonists caused a significant decrease in the levels of Rubicon and GATA4 in testis, accompanied by elevated autophagy. Collectively, we propose that Rubicon promotes Sertoli cell function by preventing autophagic degradation of GATA4, and that this mechanism could be regulated by androgens.


Sign in / Sign up

Export Citation Format

Share Document