scholarly journals Glucocorticoids Regulate the Metabolic Hormone FGF21 in a Feed-Forward Loop

2015 ◽  
Vol 29 (2) ◽  
pp. 213-223 ◽  
Author(s):  
Rucha Patel ◽  
Angie L. Bookout ◽  
Lilia Magomedova ◽  
Bryn M. Owen ◽  
Giulia P. Consiglio ◽  
...  

Abstract Hormones such as fibroblast growth factor 21 (FGF21) and glucocorticoids (GCs) play crucial roles in coordinating the adaptive starvation response. Here we examine the interplay between these hormones. It was previously shown that FGF21 induces corticosterone levels in mice by acting on the brain. We now show that this induces the expression of genes required for GC synthesis in the adrenal gland. FGF21 also increases corticosterone secretion from the adrenal in response to ACTH. We further show that the relationship between FGF21 and GCs is bidirectional. GCs induce Fgf21 expression in the liver by acting on the GC receptor (GR). The GR binds in a ligand-dependent manner to a noncanonical GR response element located approximately 4.4 kb upstream of the Fgf21 transcription start site. The GR cooperates with the nuclear fatty acid receptor, peroxisome proliferator-activated receptor-α, to stimulate Fgf21 transcription. GR and peroxisome proliferator-activated receptor-α ligands have additive effects on Fgf21 expression both in vivo and in primary cultures of mouse hepatocytes. We conclude that FGF21 and GCs regulate each other's production in a feed-forward loop and suggest that this provides a mechanism for bypassing negative feedback on the hypothalamic-pituitary-adrenal axis to allow sustained gluconeogenesis during starvation.

2010 ◽  
Vol 299 (4) ◽  
pp. E607-E614 ◽  
Author(s):  
Eric D. Berglund ◽  
Li Kang ◽  
Robert S. Lee-Young ◽  
Clinton M. Hasenour ◽  
Daniel G. Lustig ◽  
...  

Hepatic glucagon action increases in response to accelerated metabolic demands and is associated with increased whole body substrate availability, including circulating lipids. The hypothesis that increases in hepatic glucagon action stimulate AMP-activated protein kinase (AMPK) signaling and peroxisome proliferator-activated receptor-α (PPARα) and fibroblast growth factor 21 (FGF21) expression in a manner modulated by fatty acids was tested in vivo. Wild-type ( gcgr+/+) and glucagon receptor-null ( gcgr−/−) littermate mice were studied using an 18-h fast, exercise, and hyperglucagonemic-euglycemic clamps plus or minus increased circulating lipids. Fasting and exercise in gcgr+/+, but not gcgr−/− mice, increased hepatic phosphorylated AMPKα at threonine 172 (p-AMPKThr172) and PPARα and FGF21 mRNA. Clamp results in gcgr+/+ mice demonstrate that hyperlipidemia does not independently impact or modify glucagon-stimulated increases in hepatic AMP/ATP, p-AMPKThr172, or PPARα and FGF21 mRNA. It blunted glucagon-stimulated acetyl-CoA carboxylase phosphorylation, a downstream target of AMPK, and accentuated PPARα and FGF21 expression. All effects were absent in gcgr−/− mice. These findings demonstrate that glucagon exerts a critical regulatory role in liver to stimulate pathways linked to lipid metabolism in vivo and shows for the first time that effects of glucagon on PPARα and FGF21 expression are amplified by a physiological increase in circulating lipids.


PPAR Research ◽  
2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Sean R. Pyper ◽  
Navin Viswakarma ◽  
Yuzhi Jia ◽  
Yi-Jun Zhu ◽  
Joseph D. Fondell ◽  
...  

The peroxisome proliferator-activated receptor- (PPAR) plays a key role in lipid metabolism and energy combustion. Chronic activation of PPAR in rodents leads to the development of hepatocellular carcinomas. The ability of PPAR to induce expression of its target genes depends on Mediator, an evolutionarily conserved complex of cofactors and, in particular, the subunit 1 (Med1) of this complex. Here, we report the identification and characterization of PPAR-interacting cofactor (PRIC)-295 (PRIC295), a novel coactivator protein, and show that it interacts with the Med1 and Med24 subunits of the Mediator complex. PRIC295 contains 10 LXXLL signature motifs that facilitate nuclear receptor binding and interacts with PPAR and five other members of the nuclear receptor superfamily in a ligand-dependent manner. PRIC295 enhances the transactivation function of PPAR, PPAR, and ER. These data demonstrate that PRIC295 interacts with nuclear receptors such as PPAR and functions as a transcription coactivator underin vitroconditions and may play an important role in mediating the effectsin vivoas a member of the PRIC complex with Med1 and Med24.


2012 ◽  
Vol 32 (6) ◽  
pp. 619-629 ◽  
Author(s):  
Chanjuan Hao ◽  
Xuejia Cheng ◽  
Hongfei Xia ◽  
Xu Ma

The environmental obesogen hypothesis proposes that exposure to endocrine disruptors during developmental ‘window’ contributes to adipogenesis and the development of obesity. MEHP [mono-(2-ethylhexyl) phthalate], a metabolite of the widespread plasticizer DEHP [di-(2-ethylhexyl) phthalate], has been found in exposed organisms and identified as a selective PPARγ (peroxisome-proliferator-activated receptor γ) modulator. However, implication of MEHP on adipose tissue development has been poorly investigated. In the present study, we show the dose-dependent effects of MEHP on adipocyte differentiation and GPDH (glycerol-3-phosphate dehydrogenase) activity in the murine 3T3-L1 cell model. MEHP induced the expression of PPARγ as well as its target genes required for adipogenesis in vitro. Moreover, MEHP perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to a low dose of MEHP significantly increased b.w. (body weight) and fat pad weight in male offspring at PND (postnatal day) 60. In addition, serum cholesterol, TAG (triacylglycerol) and glucose levels were also significantly elevated. These results suggest that perinatal exposure to MEHP may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders.


Author(s):  
Linglan Gu ◽  
Yi Shi ◽  
Weimin Xu ◽  
Yangyang Ji

In previous investigations, we reported that peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activation by GW501516 inhibits proliferation and promotes apoptosis in the undifferentiated C666-1 nasopharyngeal carcinoma (NPC) cells by modulating caspase-dependent apoptotic pathway. In the present study, the mechanism by which GW501516 induces apoptosis was explored from the perspective of microRNA (miRNA) expression. Among the assayed miRNAs that were involved in regulating the expression of antiapoptotic protein Bcl-2, miR-206 was increased significantly and specifically by GW501516 in C666-1 cells at both the in vitro level and at the in vivo xenograft samples. The induction on miR-206 expression caused by GW501516 was capable of being antagonized by the PPARβ/δ antagonist GSK3787 and AMPK antagonist dorsomorphin in C666-1 cells. GW501516’s suppression on the growth and apoptosis of C666-1 cells was found to be dependent on the presence of miR-206. miR-206 overexpression resulted in suppressed proliferation and colony formation ability, and further triggered increased apoptosis in C666-1 cells in a caspase-dependent manner. The expression of cleaved caspase 3 and caspase 9, and the ratio of Bax to Bcl-2 were elevated remarkably by miR-206. Consistent with the in vitro result, miR-206 was corroborated to suppress the ectopic NPC xenograft tumorigenesis that derived from the C666-1 cells in BALB/c nu/nu mice. Taken together, the current data demonstrated that miR-206 plays a critical role in the direct apoptosis-promoting effect induced by GW501516 in C666-1 cells. Furthermore, the emphasized tumor-suppressive role of miR-206 in the C666-1 cells indicates that it has the potential to provide a new therapeutic approach for the undifferentiated NPC.


2019 ◽  
Vol 20 (17) ◽  
pp. 4225 ◽  
Author(s):  
Farzane Sivandzade ◽  
Luca Cucullo

Tobacco smoking (TS) is one of the most addictive habit sand a main public health hazards, impacting the vascular endothelium through oxidative stress (OS) stimuli, exposure to nicotine, and smoking-induced inflammation in a dose-dependent manner. Increasing evidence also suggested that TS increases glucose intolerance and the risk factor of developing type-2 diabetes mellitus (2DM), which, along with TS, is connected to blood–brain barrier (BBB) injuries, and heightens the risk of cerebrovascular disorders. Although the exact mechanism of rosiglitazone (RSG) is unknown, our previous in vitro work showed how RSG, an oral anti-diabetic drug belonging to the family of thiazolidinedione class, can protect BBB integrity through enhancement of nuclear factor erythroid 2-related factor (Nrf2) activity. Herein, we have validated the protective role of rosiglitazone against TS-induced BBB impairment in vivo. Our results revealed that RSG as a peroxisome proliferator-activated receptor gamma (PPARγ), activates counteractive mechanisms primarily associated with the upregulation of Nrf2 and PPARγ pathways which reduce TS-dependent toxicity at the cerebrovascular level. In line with these findings, our results show that RSG reduces inflammation and protects BBB integrity. In conclusion, RSG offers a novel and promising therapeutic application to reduce TS-induced cerebrovascular dysfunction through activation of the PPARγ-dependent and/or PPARγ-independent Nrf2 pathway.


2019 ◽  
Vol 51 (10) ◽  
pp. 1-12 ◽  
Author(s):  
Byong-Keol Min ◽  
Chang Joo Oh ◽  
Sungmi Park ◽  
Ji-Min Lee ◽  
Younghoon Go ◽  
...  

Abstract Dyslipidemia-induced atherosclerosis, which has a risk of high morbidity and mortality, can be alleviated by metabolic activation associated with mitochondrial function. The effect of dichloroacetate (DCA), a general pyruvate dehydrogenase kinase (PDK) inhibitor, on in vivo energy expenditure in ApoE−/− mice fed a western diet (WD) has not yet been investigated. WD-fed ApoE−/− mice developed atherosclerotic plaques and hyperlipidemia along with obesity, which were significantly ameliorated by DCA administration. Increased oxygen consumption was associated with heat production in the DCA-treated group, with no change in food intake or physical activity compared with those of the control. These processes were correlated with the increased gene expression of Dio2 and Ucp-1, which represents brown adipose tissue (BAT) activation, in both WD-induced atherosclerosis and high-fat-induced obesity models. In addition, we found that DCA stimulated hepatic fibroblast growth factor 21 (Fgf21) mRNA expression, which might be important for lowering lipid levels and insulin sensitization via BAT activation, in a dose- and time-dependent manner associated with serum FGF21 levels. Interestingly, Fgf21 mRNA expression was mediated in an AMP-activated protein kinase (AMPK)-dependent manner within several minutes after DCA treatment independent of peroxisome proliferator-activated receptor alpha (PPARα). Taken together, the results suggest that enhanced glucose oxidation by DCA protects against atherosclerosis by inducing hepatic FGF21 expression and BAT activation, resulting in augmented energy expenditure for heat generation.


Endocrinology ◽  
2007 ◽  
Vol 148 (10) ◽  
pp. 5011-5019 ◽  
Author(s):  
Karen Handschuh ◽  
Jean Guibourdenche ◽  
Vassilis Tsatsaris ◽  
Mickaël Guesnon ◽  
Ingrid Laurendeau ◽  
...  

A critical step in the establishment of human pregnancy is the invasion of the uterus wall by extravillous cytotrophoblasts (EVCTs) during the first trimester. It is well established that human chorionic gonadotropin hormone (hCG) is secreted by the endocrine syncytiotrophoblast (ST) into the maternal compartment. We recently reported that invasive EVCTs also produce hCG, suggesting an autocrine role in the modulation of trophoblast invasion. Here we analyzed the role of hCG secreted in vitro by primary cultures of invasive EVCT and noninvasive ST. We first demonstrated that LH/CG receptor was present in EVCTs in situ and in vitro as well as in an EVCT cell line (HIPEC65). We next showed that hCG secreted by EVCTs stimulated progesterone secretion by MA10 cells in a concentration-dependent manner. Incubation of HIPEC65 with EVCT supernatants induced a 10-fold increase in cell invasion, whereas ST supernatants had no effect. This stimulating effect was strongly decreased when hCG was depleted from EVCT supernatants containing a large amount of the hyperglycosylated form of hCG, which is almost undetectable in ST supernatants. Finally, we investigated the regulation of hCG expression by peroxisome proliferator-activated receptor (PPAR)-γ, a nuclear receptor shown to inhibit trophoblast invasion. Activation of PPARγ decreased α- and β-subunit transcript levels and total hCG secretion in primary EVCTs. Our results offer the first evidence that hCG secreted by the invasive trophoblast, likely the hyperglycosylated form of hCG, but not by the syncytiotrophoblast, promotes trophoblast invasion and may be a PPARγ target gene in trophoblast invasion process.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paulo José Basso ◽  
Helioswilton Sales-Campos ◽  
Viviani Nardini ◽  
Murillo Duarte-Silva ◽  
Vanessa Beatriz Freitas Alves ◽  
...  

The current therapeutic options for Inflammatory Bowel Diseases (IBD) are limited. Even using common anti-inflammatory, immunosuppressive or biological therapies, many patients become unresponsive to the treatments, immunosuppressed or unable to restrain secondary infections. Statins are cholesterol-lowering drugs with non-canonical anti-inflammatory properties, whose underlying mechanisms of action still remain poorly understood. Here, we described that in vitro atorvastatin (ATO) treatment was not toxic to splenocytes, constrained cell proliferation and modulated IL-6 and IL-10 production in a dose-dependent manner. Mice exposed to dextran sulfate sodium (DSS) for colitis induction and treated with ATO shifted their immune response from Th17 towards Th2, improved the clinical and histological aspects of intestinal inflammation and reduced the number of circulating leukocytes. Both experimental and in silico analyses revealed that PPAR-α expression is reduced in experimental colitis, which was reversed by ATO treatment. While IBD patients also downregulate PPAR-α expression, the responsiveness to biological therapy relied on the restoration of PPAR-α levels. Indeed, the in vitro and in vivo effects induced by ATO treatment were abrogated in Ppara-/- mice or leukocytes. In conclusion, the beneficial effects of ATO in colitis are dependent on PPAR-α, which could also be a potential predictive biomarker of therapy responsiveness in IBD.


2010 ◽  
Vol 299 (1) ◽  
pp. C128-C138 ◽  
Author(s):  
Jing Xiao ◽  
Nai-li Wang ◽  
Bing Sun ◽  
Guo-ping Cai

Estrogen receptors (ERs) play a pivotal role in adipogenesis; therefore, compounds targeting ERs may also affect fat formation. Recent studies have shown that the Dioscorea plant (commonly called yam) exhibits an antiobesity effect on rodents. However, the active compounds and underlying mechanisms responsible for this effect are not yet fully understood. We evaluated the effects of pseudoprotodiocsin (PPD), a steroid saponin from Dioscorea nipponica Makino (a type of Dioscorea), on adipogenesis and the mechanisms underlying this effect. Treatment with PPD at the onset of adipogenic differentiation resulted in significantly decreased adipogenesis in both in vitro and in vivo experimental systems. An increased amount of ERα mRNA, protein, and the accumulation of ERα in the nucleus were also observed. However, the expression pattern of ERβ was not altered. Furthermore, the antiadipogenic effect of PPD was found to be ER dependent. It was also accompanied by the decreased expression of several genes involved in adipogenesis, including lipoprotein lipase (LPL), leptin, CCAAT/enhancer-binding-protein-α (C/EBPα), and peroxisome proliferator-activated receptor-γ (PPARγ), as well as the increased expression of some negative factors of adipogenesis, including preadipocyte factor 1 (Pre-1), GATA-binding protein 2 (GATA-2), GC-induced leucine-zipper protein (GILZ), and C/EBP homologous protein (CHOP-10). In addition to its estrogenic action, PPD also abolished the p38 mitogen-activated protein kinase (p38 MAPK) activation. Our results suggest that PPD inhibits adipogenesis in an ER-dependent manner and induces the expression of ERα. These findings may provide a lead toward a novel agent that can be used to treat obesity.


2020 ◽  
Vol 318 (2) ◽  
pp. F322-F328 ◽  
Author(s):  
Pallavi Bhargava ◽  
Jaroslav Janda ◽  
Rick G. Schnellmann

Previous studies have shown that cGMP increases mitochondrial biogenesis (MB). Our laboratory has determined that formoterol and LY344864, agonists of the β2-adrenergic receptor and 5-HT1F receptor, respectively, signal MB in a soluble guanylyl cyclase (sGC)-dependent manner. However, the pathway between cGMP and MB produced by these pharmacological agents in renal proximal tubule cells (RPTCs) and the kidney has not been determined. In the present study, we showed that treatment of RPTCs with formoterol, LY344864, or riociguat, a sGC stimulator, induces MB through protein kinase G (PKG), a target of cGMP, and p38, an associated downstream target of PKG and a regulator of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression in RPTCs. We also examined if p38 plays a role in PGC-1α phosphorylation in vivo. Administration of l-skepinone, a potent and specific inhibitor of p38α and p38β, to naïve mice inhibited phosphorylated PGC-1α localization in the nuclear fraction of the renal cortex. Taken together, we demonstrated a pathway, sGC/cGMP/PKG/p38/PGC-1α, for pharmacological induction of MB and the importance of p38 in this pathway.


Sign in / Sign up

Export Citation Format

Share Document